File size: 3,560 Bytes
2115797 8aa8e01 2115797 8aa8e01 2115797 4335c8b 2115797 8aa8e01 2115797 4335c8b 2115797 4335c8b 8aa8e01 4335c8b 8aa8e01 4335c8b 8aa8e01 2115797 4335c8b 2115797 4335c8b 8aa8e01 4335c8b 8aa8e01 4335c8b 2115797 7c487f2 2115797 27a7a50 2115797 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
language:
- sw
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- model_for_talk
- mozilla-foundation/common_voice_8_0
- robust-speech-event
- sw
datasets:
- mozilla-foundation/common_voice_8_0
base_model: facebook/wav2vec2-xls-r-300m
model-index:
- name: Akashpb13/Swahili_xlsr
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: sw
metrics:
- type: wer
value: 0.11763625454589981
name: Test WER
- type: cer
value: 0.02884228669922436
name: Test CER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: kmr
metrics:
- type: wer
value: 0.11763625454589981
name: Test WER
- type: cer
value: 0.02884228669922436
name: Test CER
---
# Akashpb13/Swahili_xlsr
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - hu dataset.
It achieves the following results on the evaluation set (which is 10 percent of train data set merged with dev datasets):
- Loss: 0.159032
- Wer: 0.187934
## Model description
"facebook/wav2vec2-xls-r-300m" was finetuned.
## Intended uses & limitations
More information needed
## Training and evaluation data
Training data -
Common voice Hausa train.tsv and dev.tsv
Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0
## Training procedure
For creating the training dataset, all possible datasets were appended and 90-10 split was used.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000096
- train_batch_size: 16
- eval_batch_size: 16
- seed: 13
- gradient_accumulation_steps: 2
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 500
- num_epochs: 80
- mixed_precision_training: Native AMP
### Training results
| Step | Training Loss | Validation Loss | Wer |
|------|---------------|-----------------|----------|
| 500 | 4.810000 | 2.168847 | 0.995747 |
| 1000 | 0.564200 | 0.209411 | 0.303485 |
| 1500 | 0.217700 | 0.153959 | 0.239534 |
| 2000 | 0.150700 | 0.139901 | 0.216327 |
| 2500 | 0.119400 | 0.137543 | 0.208828 |
| 3000 | 0.099500 | 0.140921 | 0.203045 |
| 3500 | 0.087100 | 0.138835 | 0.199649 |
| 4000 | 0.074600 | 0.141297 | 0.195844 |
| 4500 | 0.066600 | 0.148560 | 0.194127 |
| 5000 | 0.060400 | 0.151214 | 0.194388 |
| 5500 | 0.054400 | 0.156072 | 0.192187 |
| 6000 | 0.051100 | 0.154726 | 0.190322 |
| 6500 | 0.048200 | 0.159847 | 0.189538 |
| 7000 | 0.046400 | 0.158727 | 0.188307 |
| 7500 | 0.046500 | 0.159032 | 0.187934 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.18.3
- Tokenizers 0.10.3
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id Akashpb13/Swahili_xlsr --dataset mozilla-foundation/common_voice_8_0 --config sw --split test
```
|