Akirami commited on
Commit
da98b89
·
verified ·
1 Parent(s): 751574e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -126
README.md CHANGED
@@ -1,9 +1,26 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
@@ -17,73 +34,39 @@ tags: []
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
 
 
73
 
74
- [More Information Needed]
75
-
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
  #### Preprocessing [optional]
89
 
@@ -92,7 +75,7 @@ Use the code below to get started with the model.
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
  #### Speeds, Sizes, Times [optional]
98
 
@@ -108,35 +91,25 @@ Use the code below to get started with the model.
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
@@ -144,56 +117,7 @@ Use the code below to get started with the model.
144
 
145
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - fancyzhx/ag_news
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: distillbert-uncased-ag-news
9
+ results:
10
+ - task:
11
+ name: Text Classification
12
+ type: text-classification
13
+ dataset:
14
+ name: ag_news
15
+ type: ag_news
16
+ args: default
17
+ metrics:
18
+ - name: Accuracy
19
+ type: accuracy
20
+ value: 0.9265
21
  ---
22
 
23
+ # Akirami/distillbert-uncased-ag-news
24
 
25
  <!-- Provide a quick summary of what the model is/does. -->
26
 
 
34
 
35
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
36
 
37
+ - **Developed by:** [Akirami](https://huggingface.co/Akirami)
38
+ - **Model type:** DistillBert
39
+ - **License:** MIT
40
+ - **Finetuned from model [optional]:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased)
 
 
 
41
 
42
+ ### Model Sources
43
 
44
  <!-- Provide the basic links for the model. -->
45
 
46
+ - **Repository:** [Akirami/distillbert-uncased-ag-news](https://huggingface.co/Akirami/distillbert-uncased-ag-news)
 
 
47
 
 
48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  ## How to Get Started with the Model
51
 
52
  Use the code below to get started with the model.
53
+ ```python
54
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
55
 
56
+ tokenizer = AutoTokenizer.from_pretrained("Akirami/distillbert-uncased-ag-news")
57
+ model = AutoModelForSequenceClassification.from_pretrained("Akirami/distillbert-uncased-ag-news")
58
+ ```
59
  ## Training Details
60
 
61
  ### Training Data
62
 
63
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
64
 
65
+ [AG News Dataset](https://huggingface.co/datasets/fancyzhx/ag_news)
66
 
67
  ### Training Procedure
68
 
69
+ The model has been trained through Knowledge Distillation, where the teacher model is [nateraw/bert-base-uncased-ag-news](https://huggingface.co/nateraw/bert-base-uncased-ag-news) and the student model is [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased)
70
 
71
  #### Preprocessing [optional]
72
 
 
75
 
76
  #### Training Hyperparameters
77
 
78
+ - **Training regime:** Trained in fp16 format
79
 
80
  #### Speeds, Sizes, Times [optional]
81
 
 
91
 
92
  #### Testing Data
93
 
94
+ The test portion of AG News data is used for testing
 
 
 
 
 
 
 
 
95
 
96
  #### Metrics
97
 
98
+ Classification Report:
99
+ | Class | Precision | Recall | F1-Score | Support |
100
+ |-------|-----------|--------|----------|---------|
101
+ | 0 | 0.95 | 0.92 | 0.94 | 1900 |
102
+ | 1 | 0.98 | 0.98 | 0.98 | 1900 |
103
+ | 2 | 0.90 | 0.88 | 0.89 | 1900 |
104
+ | 3 | 0.88 | 0.92 | 0.90 | 1900 |
105
+ | **Accuracy** | | | **0.93** | **7600** |
106
+ | **Macro Avg** | **0.93** | **0.93** | **0.93** | **7600** |
107
+ | **Weighted Avg** | **0.93** | **0.93** | **0.93** | **7600** |
108
 
109
 
110
+ Balanced Accuracy Score: 0.926578947368421
111
 
112
+ Accuracy Score: 0.9265789473684211
 
 
113
 
114
  ## Environmental Impact
115
 
 
117
 
118
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
119
 
120
+ - **Hardware Type:** [T4 GPU]
121
+ - **Hours used:** [25 Minutes]
122
+ - **Cloud Provider:** [Google Colab]
123
+ - **Carbon Emitted:** [0.01]