--- base_model: cardiffnlp/twitter-roberta-base-sentiment-latest library_name: transformers metrics: - accuracy tags: - generated_from_trainer model-index: - name: twitter-roberta-sentiment-analysiss-lr-1e-5 results: [] --- # twitter-roberta-sentiment-analysiss-lr-1e-5 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5804 - Balanced Accuracy: 0.6492 - Accuracy: 0.6649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy | Accuracy | |:-------------:|:------:|:----:|:---------------:|:-----------------:|:--------:| | 0.4577 | 1.3889 | 200 | 0.4800 | 0.6217 | 0.5382 | | 0.3676 | 2.7778 | 400 | 0.4861 | 0.6472 | 0.6059 | | 0.3078 | 4.1667 | 600 | 0.5804 | 0.6492 | 0.6649 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3