|
|
|
|
|
|
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, TrainingArguments, Trainer |
|
|
|
|
|
dataset = load_dataset("squad") |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") |
|
|
|
def preprocess_function(examples): |
|
return tokenizer( |
|
examples["question"], |
|
examples["context"], |
|
truncation=True, |
|
max_length=384, |
|
stride=128, |
|
return_overflowing_tokens=True, |
|
padding="max_length" |
|
) |
|
|
|
tokenized_dataset = dataset.map(preprocess_function, batched=True) |
|
|
|
|
|
model = AutoModelForQuestionAnswering.from_pretrained("bert-base-uncased") |
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
evaluation_strategy="epoch", |
|
learning_rate=3e-5, |
|
per_device_train_batch_size=16, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
push_to_hub=True, |
|
hub_model_id="username/qa_model_repo" |
|
) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset["train"], |
|
eval_dataset=tokenized_dataset["validation"], |
|
) |
|
|
|
trainer.train() |
|
|
|
|
|
model.push_to_hub("username/qa_model_repo") |
|
tokenizer.push_to_hub("username/qa_model_repo") |
|
|
|
print("Model and tokenizer pushed to Hugging Face Hub successfully!") |
|
|