Update train.py
Browse files
train.py
CHANGED
@@ -1,53 +1,234 @@
|
|
1 |
-
|
2 |
-
# This file contains steps 1 to 4
|
3 |
-
|
4 |
-
from datasets import load_dataset
|
5 |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, TrainingArguments, Trainer
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
examples["question"],
|
16 |
-
examples["context"],
|
17 |
-
truncation=True,
|
18 |
-
max_length=384,
|
19 |
-
stride=128,
|
20 |
-
return_overflowing_tokens=True,
|
21 |
-
padding="max_length"
|
22 |
-
)
|
23 |
-
|
24 |
-
tokenized_dataset = dataset.map(preprocess_function, batched=True)
|
25 |
-
|
26 |
-
# Step 3: Train the Model
|
27 |
-
model = AutoModelForQuestionAnswering.from_pretrained("bert-base-uncased")
|
28 |
-
|
29 |
-
training_args = TrainingArguments(
|
30 |
-
output_dir="./results",
|
31 |
-
evaluation_strategy="epoch",
|
32 |
-
learning_rate=3e-5,
|
33 |
-
per_device_train_batch_size=16,
|
34 |
-
num_train_epochs=3,
|
35 |
-
weight_decay=0.01,
|
36 |
-
push_to_hub=True, # Automatically push to the Hugging Face Hub
|
37 |
-
hub_model_id="username/qa_model_repo" # Replace with your username and model repo name
|
38 |
)
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
|
|
|
|
|
1 |
+
from datasets import load_dataset, load_metric
|
|
|
|
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, TrainingArguments, Trainer
|
3 |
+
import os
|
4 |
+
import logging
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from tqdm.auto import tqdm
|
8 |
|
9 |
+
# Set up logging
|
10 |
+
logging.basicConfig(
|
11 |
+
level=logging.INFO,
|
12 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
13 |
+
handlers=[
|
14 |
+
logging.FileHandler('training.log'),
|
15 |
+
logging.StreamHandler()
|
16 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
|
20 |
+
# Set up cache directory and token
|
21 |
+
os.environ["HF_HOME"] = "/tmp/cache"
|
22 |
+
os.makedirs("/tmp/cache", exist_ok=True)
|
23 |
+
|
24 |
+
# Get Hugging Face token securely
|
25 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
26 |
+
if HF_TOKEN is None:
|
27 |
+
raise ValueError("Hugging Face access token not found. Set it in the environment as 'HF_TOKEN'")
|
28 |
+
|
29 |
+
MODEL_HUB_ID = "Alaaeldin/example-model" # Replace with your Hugging Face username
|
30 |
+
BASE_MODEL = "deepset/roberta-base-squad2"
|
31 |
+
|
32 |
+
class ModelTrainer:
|
33 |
+
def __init__(self):
|
34 |
+
self.metric = load_metric("squad")
|
35 |
+
self.tokenizer = None
|
36 |
+
self.model = None
|
37 |
+
|
38 |
+
def load_tokenizer_and_model(self):
|
39 |
+
"""Load the tokenizer and model with error handling"""
|
40 |
+
try:
|
41 |
+
logger.info(f"Loading tokenizer and model from {BASE_MODEL}")
|
42 |
+
self.tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
43 |
+
self.model = AutoModelForQuestionAnswering.from_pretrained(BASE_MODEL)
|
44 |
+
return True
|
45 |
+
except Exception as e:
|
46 |
+
logger.error(f"Error loading tokenizer and model: {e}")
|
47 |
+
raise
|
48 |
+
|
49 |
+
def preprocess_function(self, examples):
|
50 |
+
"""Preprocess the dataset examples"""
|
51 |
+
try:
|
52 |
+
tokenized_examples = self.tokenizer(
|
53 |
+
examples["question"],
|
54 |
+
examples["context"],
|
55 |
+
truncation=True,
|
56 |
+
max_length=384,
|
57 |
+
stride=128,
|
58 |
+
return_overflowing_tokens=True,
|
59 |
+
return_offsets_mapping=True,
|
60 |
+
padding="max_length",
|
61 |
+
)
|
62 |
+
|
63 |
+
sample_mapping = tokenized_examples["overflow_to_sample_mapping"]
|
64 |
+
tokenized_examples["start_positions"] = []
|
65 |
+
tokenized_examples["end_positions"] = []
|
66 |
+
|
67 |
+
for i, offsets in enumerate(tokenized_examples["offset_mapping"]):
|
68 |
+
sample_idx = sample_mapping[i]
|
69 |
+
answers = examples["answers"][sample_idx]
|
70 |
+
|
71 |
+
# Default values
|
72 |
+
start_position = 0
|
73 |
+
end_position = 0
|
74 |
+
|
75 |
+
if len(answers["answer_start"]) > 0 and len(answers["text"]) > 0:
|
76 |
+
start_char = answers["answer_start"][0]
|
77 |
+
end_char = start_char + len(answers["text"][0])
|
78 |
+
|
79 |
+
# Find token positions
|
80 |
+
token_start_index = 0
|
81 |
+
token_end_index = len(offsets) - 1
|
82 |
+
|
83 |
+
# Find start position
|
84 |
+
while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
|
85 |
+
token_start_index += 1
|
86 |
+
token_start_index -= 1
|
87 |
+
|
88 |
+
# Find end position
|
89 |
+
while token_end_index > 0 and offsets[token_end_index][1] >= end_char:
|
90 |
+
token_end_index -= 1
|
91 |
+
token_end_index += 1
|
92 |
+
|
93 |
+
if 0 <= token_start_index <= token_end_index < len(offsets):
|
94 |
+
start_position = token_start_index
|
95 |
+
end_position = token_end_index
|
96 |
+
|
97 |
+
tokenized_examples["start_positions"].append(start_position)
|
98 |
+
tokenized_examples["end_positions"].append(end_position)
|
99 |
+
|
100 |
+
return tokenized_examples
|
101 |
+
except Exception as e:
|
102 |
+
logger.error(f"Error in preprocessing: {e}")
|
103 |
+
raise
|
104 |
+
|
105 |
+
def compute_metrics(self, eval_pred):
|
106 |
+
"""Compute evaluation metrics"""
|
107 |
+
predictions, labels = eval_pred
|
108 |
+
start_logits, end_logits = predictions
|
109 |
+
|
110 |
+
start_predictions = np.argmax(start_logits, axis=-1)
|
111 |
+
end_predictions = np.argmax(end_logits, axis=-1)
|
112 |
+
|
113 |
+
results = self.metric.compute(
|
114 |
+
predictions={
|
115 |
+
"start_positions": start_predictions,
|
116 |
+
"end_positions": end_predictions
|
117 |
+
},
|
118 |
+
references={
|
119 |
+
"start_positions": labels[0],
|
120 |
+
"end_positions": labels[1]
|
121 |
+
}
|
122 |
+
)
|
123 |
+
return results
|
124 |
|
125 |
+
def validate_model_outputs(self, model, tokenizer):
|
126 |
+
"""Validate model outputs with a test example"""
|
127 |
+
logger.info("Validating model outputs...")
|
128 |
+
try:
|
129 |
+
test_question = "What is the capital of France?"
|
130 |
+
test_context = "Paris is the capital of France."
|
131 |
+
|
132 |
+
inputs = tokenizer(
|
133 |
+
test_question,
|
134 |
+
test_context,
|
135 |
+
return_tensors="pt",
|
136 |
+
truncation=True,
|
137 |
+
max_length=384,
|
138 |
+
padding="max_length"
|
139 |
+
)
|
140 |
+
|
141 |
+
outputs = model(**inputs)
|
142 |
+
|
143 |
+
if not (isinstance(outputs.start_logits, torch.Tensor) and
|
144 |
+
isinstance(outputs.end_logits, torch.Tensor)):
|
145 |
+
raise ValueError("Model outputs validation failed")
|
146 |
+
|
147 |
+
logger.info("Model validation successful!")
|
148 |
+
return True
|
149 |
+
except Exception as e:
|
150 |
+
logger.error(f"Model validation failed: {e}")
|
151 |
+
raise
|
152 |
|
153 |
+
def train(self):
|
154 |
+
"""Main training function"""
|
155 |
+
try:
|
156 |
+
logger.info("Starting training pipeline...")
|
157 |
+
|
158 |
+
# Load dataset with a smaller subset
|
159 |
+
logger.info("Loading SQuAD dataset...")
|
160 |
+
dataset = load_dataset("squad", split={
|
161 |
+
'train': 'train[:1000]',
|
162 |
+
'validation': 'validation[:100]'
|
163 |
+
})
|
164 |
+
|
165 |
+
# Load tokenizer and model
|
166 |
+
self.load_tokenizer_and_model()
|
167 |
+
|
168 |
+
# Preprocess dataset
|
169 |
+
logger.info("Preprocessing dataset...")
|
170 |
+
tokenized_dataset = dataset.map(
|
171 |
+
self.preprocess_function,
|
172 |
+
batched=True,
|
173 |
+
remove_columns=dataset["train"].column_names,
|
174 |
+
num_proc=2 # Reduced for Spaces
|
175 |
+
)
|
176 |
+
|
177 |
+
# Set up training arguments
|
178 |
+
output_dir = "/tmp/results"
|
179 |
+
os.makedirs(output_dir, exist_ok=True)
|
180 |
+
|
181 |
+
training_args = TrainingArguments(
|
182 |
+
output_dir=output_dir,
|
183 |
+
evaluation_strategy="steps",
|
184 |
+
eval_steps=100,
|
185 |
+
save_strategy="steps",
|
186 |
+
save_steps=100,
|
187 |
+
learning_rate=3e-5,
|
188 |
+
per_device_train_batch_size=4,
|
189 |
+
per_device_eval_batch_size=4,
|
190 |
+
num_train_epochs=1,
|
191 |
+
weight_decay=0.01,
|
192 |
+
load_best_model_at_end=True,
|
193 |
+
metric_for_best_model="eval_loss",
|
194 |
+
push_to_hub=True,
|
195 |
+
hub_model_id=MODEL_HUB_ID,
|
196 |
+
hub_token=HF_TOKEN,
|
197 |
+
report_to=["tensorboard"],
|
198 |
+
logging_dir="./logs",
|
199 |
+
logging_steps=50,
|
200 |
+
gradient_accumulation_steps=4,
|
201 |
+
warmup_steps=100,
|
202 |
+
)
|
203 |
+
|
204 |
+
# Initialize trainer
|
205 |
+
trainer = Trainer(
|
206 |
+
model=self.model,
|
207 |
+
args=training_args,
|
208 |
+
train_dataset=tokenized_dataset["train"],
|
209 |
+
eval_dataset=tokenized_dataset["validation"],
|
210 |
+
compute_metrics=self.compute_metrics,
|
211 |
+
)
|
212 |
+
|
213 |
+
# Train the model
|
214 |
+
logger.info("Starting training...")
|
215 |
+
trainer.train()
|
216 |
+
|
217 |
+
# Validate model
|
218 |
+
self.validate_model_outputs(self.model, self.tokenizer)
|
219 |
+
|
220 |
+
# Save and push to hub
|
221 |
+
logger.info("Saving and pushing model to Hugging Face Hub...")
|
222 |
+
trainer.save_model()
|
223 |
+
self.model.push_to_hub(MODEL_HUB_ID, use_auth_token=HF_TOKEN)
|
224 |
+
self.tokenizer.push_to_hub(MODEL_HUB_ID, use_auth_token=HF_TOKEN)
|
225 |
+
|
226 |
+
logger.info("Training pipeline completed successfully!")
|
227 |
+
|
228 |
+
except Exception as e:
|
229 |
+
logger.error(f"Training pipeline failed: {e}")
|
230 |
+
raise
|
231 |
|
232 |
+
if __name__ == "__main__":
|
233 |
+
trainer = ModelTrainer()
|
234 |
+
trainer.train()
|