Alan1402 commited on
Commit
b0aaade
·
verified ·
1 Parent(s): 38131cd

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 241.97 +/- 23.45
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d8e60865ea0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d8e60865f30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d8e60865fc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d8e60866050>", "_build": "<function ActorCriticPolicy._build at 0x7d8e608660e0>", "forward": "<function ActorCriticPolicy.forward at 0x7d8e60866170>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d8e60866200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d8e60866290>", "_predict": "<function ActorCriticPolicy._predict at 0x7d8e60866320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d8e608663b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d8e60866440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d8e608664d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d8e6080ec00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718166576724745646, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPb3zzDMRa6vrBHO1cbNDYJzIU6keEtNQAAgD8AAIA/DYXKvYUfcD+G8rq9E9yQvueChb0tkxy9AAAAAAAAAAAaKEo9KVgTun57FDsmV2ozrUFHO3zxwzEAAIA/AACAP4CWTD2uEZ+66ZSTuiv3dbXncAW6hLSpOQAAgD8AAIA/MyNwu+zRizjJM7E7F1gItsvxG7vWCBC1AACAPwAAgD/NLBO7Hw3AuTpZU7uiCRA1M+Q1uquWdzoAAIA/AACAP82cUj1chye6knhKOs2pXTXaJvY6VWtwuQAAgD8AAIA/M1vdPeEqjbp7HfW5F7MMNc9MJTtV9Ao5AACAPwAAgD9mxFM8ro2nuurX47qCIeG1Q5jruSC4AjoAAIA/AACAPzN4Hb2ucYe6RAlGuoZRP7Vm3QA6LqVmOQAAgD8AAIA/mukEu/Z8LLpxw7w6npRgNcw1PLryR9e5AACAPwAAgD+ml3W+1NqkPlWOXj6C0Du+pkBVvHgCsD0AAAAAAAAAAI08qz24Hve53Y/lOuJsdDUMnQE7RqwDugAAgD8AAIA/TbwQvU+7dD9jHPy8vguvvm4cFD1ewww8AAAAAAAAAAAzqnQ9KVxmunAS57rzjN+12jvyutc0BzoAAIA/AACAP+ZS5z327De6Dg49um8mRLc8UI+7WddDOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEcopyZKFqWMAWyUS9CMAXSUR0CTdQEWIoE0dX2UKGgGR0Bf8F/lQuVYaAdN6ANoCEdAk3VfHktEonV9lChoBkdAWwpRIjGDMGgHTegDaAhHQJN37vF3pwF1fZQoaAZHQGMfmReTmnxoB03oA2gIR0CTfdbaAWi2dX2UKGgGR0Bgjgmb9ZRsaAdN6ANoCEdAk35Llq8DjnV9lChoBkdAYSsZ3s5XEWgHTegDaAhHQJN+T9UCJXR1fZQoaAZHQGM20Bfa6BloB03oA2gIR0CTg3BfrrxBdX2UKGgGR0BkH4rSVnmJaAdN6ANoCEdAk4aGSZBsynV9lChoBkfAMs+1ndweeWgHS8JoCEdAk4hHqmj0tnV9lChoBkdAY9NflZHNHGgHTegDaAhHQJORFTP0I1N1fZQoaAZHQGG6UtI065poB03oA2gIR0CTmJNsnAqNdX2UKGgGR0Be8ms3hn8LaAdN6ANoCEdAk6IIhEBsAXV9lChoBkdAYgy5RTCLuWgHTegDaAhHQJO684jrzGx1fZQoaAZHQGKX+S0Sh8JoB03oA2gIR0CTuxHXVbzLdX2UKGgGR0Bg9D5AQg9vaAdN6ANoCEdAk7vNZNfw7XV9lChoBkdAZnyVk+X7cmgHTegDaAhHQJO/I2/BWPt1fZQoaAZHQGQw89wFTvRoB03oA2gIR0CTwsSK3uuzdX2UKGgGR0Bgt9LUTcqOaAdN6ANoCEdAk8OW6oVEeHV9lChoBkdAYtbyYG+sYGgHTegDaAhHQJPD2skpqh11fZQoaAZHQF3urwOOKfpoB03oA2gIR0CTxcNDMNc4dX2UKGgGR0BhfJ+KCQLeaAdN6ANoCEdAk8otZNfw7XV9lChoBkdAZJp0DEFW4mgHTegDaAhHQJPKhoduHet1fZQoaAZHQEdwo9cKPXFoB01CAWgIR0CTy+Jvo/zKdX2UKGgGR0BjWJBVuJk5aAdN6ANoCEdAk8+c1fmcOXV9lChoBkdAYGmgAZKnN2gHTegDaAhHQJPTUv0yxiZ1fZQoaAZHQGHaM3Q2MsJoB03oA2gIR0CT1XWZ7XxwdX2UKGgGR0BauX8fms/6aAdN6ANoCEdAk+FSHymQ83V9lChoBkdAXfWknCwbEWgHTegDaAhHQJPrOOaOPvN1fZQoaAZHQGVP+qzZ6D5oB03oA2gIR0CT9Tp97WupdX2UKGgGR0Bh6LORkmQbaAdN6ANoCEdAlAujdUKiPHV9lChoBkdAZB8kDZDiO2gHTegDaAhHQJQMlJnQID51fZQoaAZHQGXAgQYk3S9oB03oA2gIR0CUEDT5wfhddX2UKGgGR0Bh3UzKs+3ZaAdN6ANoCEdAlBU14Pf8/HV9lChoBkdAYqbm4AjptGgHTegDaAhHQJQWWnuRcNZ1fZQoaAZHQGILYJu2qkxoB03oA2gIR0CUFrRmseXBdX2UKGgGR0BdwazAvcrRaAdN6ANoCEdAlBlsfvF3p3V9lChoBkdAY9BhnanJk2gHTegDaAhHQJQev557gKp1fZQoaAZHQGK887IT4+NoB03oA2gIR0CUHxz6rNnodX2UKGgGR0BmzVwJgLJCaAdN6ANoCEdAlCB7MX7+DXV9lChoBkdAXZnHim2srGgHTegDaAhHQJQkARmK64F1fZQoaAZHQGQocO09hZ1oB03oA2gIR0CUJ1NaQmu1dX2UKGgGR0BnO5/iHZbqaAdN6ANoCEdAlCkSkCV8kXV9lChoBkfAIiKW9lEqlWgHS7JoCEdAlC0HO4XoDHV9lChoBkdAYzhQZXMhYGgHTegDaAhHQJQxONWEK3N1fZQoaAZHQGHOzHS4OMFoB03oA2gIR0CUOA33pOerdX2UKGgGR0BieOiFj/dZaAdN6ANoCEdAlEDASFoL5XV9lChoBkdAYNtPepGWlmgHTegDaAhHQJRF0xL0z0p1fZQoaAZHQGGUiiyprDZoB03oA2gIR0CUWqx6v7m/dX2UKGgGR0AhHezD4xk/aAdNGAFoCEdAlF0HD7655XV9lChoBkdAZFO0ojOcD2gHTegDaAhHQJReFqQA+6l1fZQoaAZHQGIHqbrkbP1oB03oA2gIR0CUYZcjJMg2dX2UKGgGR0BhE/Gff4yoaAdN6ANoCEdAlGJfL1VYIXV9lChoBkdAYTWd9Ujs2WgHTegDaAhHQJRioUh3aBZ1fZQoaAZHQF+jrO7g88toB03oA2gIR0CUZKXMhX8wdX2UKGgGR0BlgjWVeKKpaAdN6ANoCEdAlGl3vx6OYXV9lChoBkdAYcrUuL74z2gHTegDaAhHQJRp2NtIkJN1fZQoaAZHQGFYu7QLNOdoB03oA2gIR0CUaz0oScsldX2UKGgGR0BCSoTwlSjyaAdNDQFoCEdAlHEOCCjDbnV9lChoBkdAZNEKwY+B6WgHTegDaAhHQJRyv4zrNW51fZQoaAZHQF467jT8YQ9oB03oA2gIR0CUdMIJZ4fPdX2UKGgGR0Bh5EuzyBkJaAdN6ANoCEdAlHp6g7HQyHV9lChoBkdAYrljLjghr2gHTegDaAhHQJSAz9BKL891fZQoaAZHQGIWuvECNjtoB03oA2gIR0CUlLFGoaUBdX2UKGgGR0BkYGjCYTkAaAdN6ANoCEdAlJocuFpPAXV9lChoBkdAZmC6TW5H3GgHTegDaAhHQJSbFt2s7uF1fZQoaAZHQGZUO9OARTVoB03oA2gIR0CUsHayrxRVdX2UKGgGR0BiNsg8r7O3aAdN6ANoCEdAlLIOLBKtgnV9lChoBkdAYUaFpPAO8WgHTegDaAhHQJS205NoJzF1fZQoaAZHQGCHeS8rZrZoB03oA2gIR0CUt6yIYWLxdX2UKGgGR0Bhdy3d9Dx9aAdN6ANoCEdAlLo6B3A2ynV9lChoBkdAQDumtQsPKGgHS+doCEdAlL8glv60pnV9lChoBkdAZMtAhStNjGgHTegDaAhHQJS/XMPjGT91fZQoaAZHQGDI3Sro4dZoB03oA2gIR0CUv76mfoRqdX2UKGgGR0BmQyIpH7P6aAdN6ANoCEdAlMEKcVgx8HV9lChoBkdAYMn9Hc1wYWgHTegDaAhHQJTGJ17pmmN1fZQoaAZHQGHnzSsr/bVoB03oA2gIR0CUx6oOhCdCdX2UKGgGR0BkMposZpBYaAdN6ANoCEdAlMmO7xusLnV9lChoBkdASL8pEx7AtWgHS9xoCEdAlMqVYZEUkHV9lChoBkdAYgCq2jO9nWgHTegDaAhHQJTN1/0/W2B1fZQoaAZHQGKHBYvFm4BoB03oA2gIR0CU0nwSamXPdX2UKGgGR0BJO2ykbgjyaAdLzmgIR0CU2gvHtF8YdX2UKGgGR0BfQO1Bt1p1aAdN6ANoCEdAlOYFFlTWG3V9lChoBkdAYCjrVOKwZGgHTegDaAhHQJTsOEzwc5t1fZQoaAZHQGMyrteD3/RoB03oA2gIR0CU7TZkCmuUdX2UKGgGR0BnZuxhUipvaAdN6ANoCEdAlQKBIWgvlHV9lChoBkdAYky+TvAoHGgHTegDaAhHQJUGcsmOU+t1fZQoaAZHQGcaeBpYcNpoB03oA2gIR0CVB0/5+H8CdX2UKGgGR0BjJQ3gk1MuaAdN6ANoCEdAlQngpjMFEHV9lChoBkdAZAWwzLwF1WgHTegDaAhHQJUO1/XoTwl1fZQoaAZHQGJ04xtYSxtoB03oA2gIR0CVD3b+cYqHdX2UKGgGR0BmRy4lQdjoaAdN6ANoCEdAlRD90FKTS3V9lChoBkdAZF9m5DqnnGgHTegDaAhHQJUYzfHggox1fZQoaAZHQGSpoXsPatdoB03oA2gIR0CVGxWw/xDtdX2UKGgGR0Bhsu/cnE2paAdN6ANoCEdAlR3jCYTkAHV9lChoBkdAYSsHCXQdCGgHTegDaAhHQJUe9pXZGrl1fZQoaAZHQGI9UTlDF61oB03oA2gIR0CVJyZCv5gxdX2UKGgGR0Bl7x8hLXcyaAdN6ANoCEdAlS+XQMQVbnV9lChoBkdAY1DKQq7ROWgHTegDaAhHQJU6DlxOtXB1fZQoaAZHQGHUig00m+loB03oA2gIR0CVP58b70nPdX2UKGgGR0BdTGois4kvaAdN6ANoCEdAlUCj4xk/bHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4314eb65d16cc54c85e5725a588f398da6e007de755ccf8150e259039b5bfad5
3
+ size 148080
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d8e60865ea0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d8e60865f30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d8e60865fc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d8e60866050>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d8e608660e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d8e60866170>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d8e60866200>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d8e60866290>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d8e60866320>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d8e608663b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d8e60866440>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d8e608664d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d8e6080ec00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1718166576724745646,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPb3zzDMRa6vrBHO1cbNDYJzIU6keEtNQAAgD8AAIA/DYXKvYUfcD+G8rq9E9yQvueChb0tkxy9AAAAAAAAAAAaKEo9KVgTun57FDsmV2ozrUFHO3zxwzEAAIA/AACAP4CWTD2uEZ+66ZSTuiv3dbXncAW6hLSpOQAAgD8AAIA/MyNwu+zRizjJM7E7F1gItsvxG7vWCBC1AACAPwAAgD/NLBO7Hw3AuTpZU7uiCRA1M+Q1uquWdzoAAIA/AACAP82cUj1chye6knhKOs2pXTXaJvY6VWtwuQAAgD8AAIA/M1vdPeEqjbp7HfW5F7MMNc9MJTtV9Ao5AACAPwAAgD9mxFM8ro2nuurX47qCIeG1Q5jruSC4AjoAAIA/AACAPzN4Hb2ucYe6RAlGuoZRP7Vm3QA6LqVmOQAAgD8AAIA/mukEu/Z8LLpxw7w6npRgNcw1PLryR9e5AACAPwAAgD+ml3W+1NqkPlWOXj6C0Du+pkBVvHgCsD0AAAAAAAAAAI08qz24Hve53Y/lOuJsdDUMnQE7RqwDugAAgD8AAIA/TbwQvU+7dD9jHPy8vguvvm4cFD1ewww8AAAAAAAAAAAzqnQ9KVxmunAS57rzjN+12jvyutc0BzoAAIA/AACAP+ZS5z327De6Dg49um8mRLc8UI+7WddDOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEcopyZKFqWMAWyUS9CMAXSUR0CTdQEWIoE0dX2UKGgGR0Bf8F/lQuVYaAdN6ANoCEdAk3VfHktEonV9lChoBkdAWwpRIjGDMGgHTegDaAhHQJN37vF3pwF1fZQoaAZHQGMfmReTmnxoB03oA2gIR0CTfdbaAWi2dX2UKGgGR0Bgjgmb9ZRsaAdN6ANoCEdAk35Llq8DjnV9lChoBkdAYSsZ3s5XEWgHTegDaAhHQJN+T9UCJXR1fZQoaAZHQGM20Bfa6BloB03oA2gIR0CTg3BfrrxBdX2UKGgGR0BkH4rSVnmJaAdN6ANoCEdAk4aGSZBsynV9lChoBkfAMs+1ndweeWgHS8JoCEdAk4hHqmj0tnV9lChoBkdAY9NflZHNHGgHTegDaAhHQJORFTP0I1N1fZQoaAZHQGG6UtI065poB03oA2gIR0CTmJNsnAqNdX2UKGgGR0Be8ms3hn8LaAdN6ANoCEdAk6IIhEBsAXV9lChoBkdAYgy5RTCLuWgHTegDaAhHQJO684jrzGx1fZQoaAZHQGKX+S0Sh8JoB03oA2gIR0CTuxHXVbzLdX2UKGgGR0Bg9D5AQg9vaAdN6ANoCEdAk7vNZNfw7XV9lChoBkdAZnyVk+X7cmgHTegDaAhHQJO/I2/BWPt1fZQoaAZHQGQw89wFTvRoB03oA2gIR0CTwsSK3uuzdX2UKGgGR0Bgt9LUTcqOaAdN6ANoCEdAk8OW6oVEeHV9lChoBkdAYtbyYG+sYGgHTegDaAhHQJPD2skpqh11fZQoaAZHQF3urwOOKfpoB03oA2gIR0CTxcNDMNc4dX2UKGgGR0BhfJ+KCQLeaAdN6ANoCEdAk8otZNfw7XV9lChoBkdAZJp0DEFW4mgHTegDaAhHQJPKhoduHet1fZQoaAZHQEdwo9cKPXFoB01CAWgIR0CTy+Jvo/zKdX2UKGgGR0BjWJBVuJk5aAdN6ANoCEdAk8+c1fmcOXV9lChoBkdAYGmgAZKnN2gHTegDaAhHQJPTUv0yxiZ1fZQoaAZHQGHaM3Q2MsJoB03oA2gIR0CT1XWZ7XxwdX2UKGgGR0BauX8fms/6aAdN6ANoCEdAk+FSHymQ83V9lChoBkdAXfWknCwbEWgHTegDaAhHQJPrOOaOPvN1fZQoaAZHQGVP+qzZ6D5oB03oA2gIR0CT9Tp97WupdX2UKGgGR0Bh6LORkmQbaAdN6ANoCEdAlAujdUKiPHV9lChoBkdAZB8kDZDiO2gHTegDaAhHQJQMlJnQID51fZQoaAZHQGXAgQYk3S9oB03oA2gIR0CUEDT5wfhddX2UKGgGR0Bh3UzKs+3ZaAdN6ANoCEdAlBU14Pf8/HV9lChoBkdAYqbm4AjptGgHTegDaAhHQJQWWnuRcNZ1fZQoaAZHQGILYJu2qkxoB03oA2gIR0CUFrRmseXBdX2UKGgGR0BdwazAvcrRaAdN6ANoCEdAlBlsfvF3p3V9lChoBkdAY9BhnanJk2gHTegDaAhHQJQev557gKp1fZQoaAZHQGK887IT4+NoB03oA2gIR0CUHxz6rNnodX2UKGgGR0BmzVwJgLJCaAdN6ANoCEdAlCB7MX7+DXV9lChoBkdAXZnHim2srGgHTegDaAhHQJQkARmK64F1fZQoaAZHQGQocO09hZ1oB03oA2gIR0CUJ1NaQmu1dX2UKGgGR0BnO5/iHZbqaAdN6ANoCEdAlCkSkCV8kXV9lChoBkfAIiKW9lEqlWgHS7JoCEdAlC0HO4XoDHV9lChoBkdAYzhQZXMhYGgHTegDaAhHQJQxONWEK3N1fZQoaAZHQGHOzHS4OMFoB03oA2gIR0CUOA33pOerdX2UKGgGR0BieOiFj/dZaAdN6ANoCEdAlEDASFoL5XV9lChoBkdAYNtPepGWlmgHTegDaAhHQJRF0xL0z0p1fZQoaAZHQGGUiiyprDZoB03oA2gIR0CUWqx6v7m/dX2UKGgGR0AhHezD4xk/aAdNGAFoCEdAlF0HD7655XV9lChoBkdAZFO0ojOcD2gHTegDaAhHQJReFqQA+6l1fZQoaAZHQGIHqbrkbP1oB03oA2gIR0CUYZcjJMg2dX2UKGgGR0BhE/Gff4yoaAdN6ANoCEdAlGJfL1VYIXV9lChoBkdAYTWd9Ujs2WgHTegDaAhHQJRioUh3aBZ1fZQoaAZHQF+jrO7g88toB03oA2gIR0CUZKXMhX8wdX2UKGgGR0BlgjWVeKKpaAdN6ANoCEdAlGl3vx6OYXV9lChoBkdAYcrUuL74z2gHTegDaAhHQJRp2NtIkJN1fZQoaAZHQGFYu7QLNOdoB03oA2gIR0CUaz0oScsldX2UKGgGR0BCSoTwlSjyaAdNDQFoCEdAlHEOCCjDbnV9lChoBkdAZNEKwY+B6WgHTegDaAhHQJRyv4zrNW51fZQoaAZHQF467jT8YQ9oB03oA2gIR0CUdMIJZ4fPdX2UKGgGR0Bh5EuzyBkJaAdN6ANoCEdAlHp6g7HQyHV9lChoBkdAYrljLjghr2gHTegDaAhHQJSAz9BKL891fZQoaAZHQGIWuvECNjtoB03oA2gIR0CUlLFGoaUBdX2UKGgGR0BkYGjCYTkAaAdN6ANoCEdAlJocuFpPAXV9lChoBkdAZmC6TW5H3GgHTegDaAhHQJSbFt2s7uF1fZQoaAZHQGZUO9OARTVoB03oA2gIR0CUsHayrxRVdX2UKGgGR0BiNsg8r7O3aAdN6ANoCEdAlLIOLBKtgnV9lChoBkdAYUaFpPAO8WgHTegDaAhHQJS205NoJzF1fZQoaAZHQGCHeS8rZrZoB03oA2gIR0CUt6yIYWLxdX2UKGgGR0Bhdy3d9Dx9aAdN6ANoCEdAlLo6B3A2ynV9lChoBkdAQDumtQsPKGgHS+doCEdAlL8glv60pnV9lChoBkdAZMtAhStNjGgHTegDaAhHQJS/XMPjGT91fZQoaAZHQGDI3Sro4dZoB03oA2gIR0CUv76mfoRqdX2UKGgGR0BmQyIpH7P6aAdN6ANoCEdAlMEKcVgx8HV9lChoBkdAYMn9Hc1wYWgHTegDaAhHQJTGJ17pmmN1fZQoaAZHQGHnzSsr/bVoB03oA2gIR0CUx6oOhCdCdX2UKGgGR0BkMposZpBYaAdN6ANoCEdAlMmO7xusLnV9lChoBkdASL8pEx7AtWgHS9xoCEdAlMqVYZEUkHV9lChoBkdAYgCq2jO9nWgHTegDaAhHQJTN1/0/W2B1fZQoaAZHQGKHBYvFm4BoB03oA2gIR0CU0nwSamXPdX2UKGgGR0BJO2ykbgjyaAdLzmgIR0CU2gvHtF8YdX2UKGgGR0BfQO1Bt1p1aAdN6ANoCEdAlOYFFlTWG3V9lChoBkdAYCjrVOKwZGgHTegDaAhHQJTsOEzwc5t1fZQoaAZHQGMyrteD3/RoB03oA2gIR0CU7TZkCmuUdX2UKGgGR0BnZuxhUipvaAdN6ANoCEdAlQKBIWgvlHV9lChoBkdAYky+TvAoHGgHTegDaAhHQJUGcsmOU+t1fZQoaAZHQGcaeBpYcNpoB03oA2gIR0CVB0/5+H8CdX2UKGgGR0BjJQ3gk1MuaAdN6ANoCEdAlQngpjMFEHV9lChoBkdAZAWwzLwF1WgHTegDaAhHQJUO1/XoTwl1fZQoaAZHQGJ04xtYSxtoB03oA2gIR0CVD3b+cYqHdX2UKGgGR0BmRy4lQdjoaAdN6ANoCEdAlRD90FKTS3V9lChoBkdAZF9m5DqnnGgHTegDaAhHQJUYzfHggox1fZQoaAZHQGSpoXsPatdoB03oA2gIR0CVGxWw/xDtdX2UKGgGR0Bhsu/cnE2paAdN6ANoCEdAlR3jCYTkAHV9lChoBkdAYSsHCXQdCGgHTegDaAhHQJUe9pXZGrl1fZQoaAZHQGI9UTlDF61oB03oA2gIR0CVJyZCv5gxdX2UKGgGR0Bl7x8hLXcyaAdN6ANoCEdAlS+XQMQVbnV9lChoBkdAY1DKQq7ROWgHTegDaAhHQJU6DlxOtXB1fZQoaAZHQGHUig00m+loB03oA2gIR0CVP58b70nPdX2UKGgGR0BdTGois4kvaAdN6ANoCEdAlUCj4xk/bHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84d7e09c23bf0e076a3597db029e57c0215ae4cb8515d626d964c04ce0ca6444
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d900b87f514e8e50d48f193f8a40782431ab5cd519408827aad1a5cebd561fd9
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (198 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 241.96675277141048, "std_reward": 23.446474876609436, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-12T05:01:06.545951"}