--- library_name: transformers tags: [] --- # Model Card for Model ID ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Set a manual seed for reproducibility torch.manual_seed(0) # Load the model with specific configurations model = AutoModelForCausalLM.from_pretrained( "AlanYky/phi-3.5_tweets_instruct", device_map="cuda", torch_dtype="auto", trust_remote_code=True ) model.to("cuda") # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct") # Define a function to generate tweets def generate_tweet(instruction, pipe, generation_args): """ Generate a tweet response based on an instruction. """ # Define the message structure messages = [ { "role": "user", "content": instruction } ] # Generate the tweet response output = pipe(messages, **generation_args) # Extract and return the generated tweet text return output[0]['generated_text'] # Set up the pipeline for text generation pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, ) # Define generation arguments for tweet creation generation_args = { "max_new_tokens": 70, "return_full_text": False, "temperature": 0.4, "top_k": 50, "top_p": 0.9, "repetition_penalty": 1.2, "do_sample": True, } # Specify an instruction for tweet generation instruction = "Generate a tweet about Donald Trump is the 2024 US President." generated_tweet = generate_tweet(instruction, pipe, generation_args) print(generated_tweet) ``` ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]