--- library_name: transformers tags: - generated_from_trainer datasets: - Alant2000/taiga_cleared metrics: - accuracy model-index: - name: output results: - task: name: Causal Language Modeling type: text-generation dataset: name: Alant2000/taiga_cleared type: Alant2000/taiga_cleared metrics: - name: Accuracy type: accuracy value: 0.3070757857382329 --- Модель обучена в рамках практического задания по курсу "Практические аспекты обучения LLM": https://github.com/RefalMachine/rcc_msu_llm_course_autumn_2024/tree/main This model is a fine-tuned version of ruadapt_qwen2.5_1.5B_ext_u48_mean_init on the [Alant2000/taiga_cleared](https://huggingface.co/datasets/Alant2000/taiga_cleared) dataset. It achieves the following results on the evaluation set: - Loss: 4.0484 - Accuracy: 0.3071 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.0008 | 1 | 7.8632 | 0.1493 | | 4.0503 | 0.7593 | 1000 | 4.0488 | 0.3070 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.0a0+6ddf5cf85e.nv24.04 - Datasets 2.18.0 - Tokenizers 0.20.3