File size: 19,957 Bytes
2880a2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "db772bcc",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Data handling\n",
    "import pandas as pd\n",
    "import numpy as np \n",
    "\n",
    "\n",
    "# EDA (pandas-profiling, etc. )\n",
    "...\n",
    "\n",
    "# Feature Processing (Scikit-learn processing, etc. )\n",
    "from sklearn import preprocessing\n",
    "\n",
    "# Machine Learning (Scikit-learn Estimators, Catboost, LightGBM, etc. )\n",
    "...\n",
    "\n",
    "# Hyperparameters Fine-tuning (Scikit-learn hp search, cross-validation, etc. )\n",
    "...\n",
    "\n",
    "# Other packages\n",
    "import os\n",
    "import warnings\n",
    "warnings.filterwarnings('ignore')\n",
    "\n",
    "#display all columns and rows \n",
    "pd.set_option('display.max_columns', None)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d80b4220",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Class counts before SMOTE: No     4111\n",
      "Yes    1505\n",
      "Name: Churn, dtype: int64\n",
      "Class counts after SMOTE: Yes    4111\n",
      "No     4111\n",
      "Name: Churn, dtype: int64\n",
      "AdaBoost Classifier: 0.9019360028118717\n",
      "Logistic Regression Classifier: 0.8608679697080713\n",
      "Random Forest Classifier: 0.9311295690912422\n",
      "Gradient Boosting Classifier: 0.9235269779240596\n",
      "SVM Classifier: 0.8944493562575639\n",
      "Best model: Random Forest Classifier\n",
      "AdaBoost Classifier classification report:\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "          No       0.90      0.76      0.82      1053\n",
      "         Yes       0.50      0.74      0.60       352\n",
      "\n",
      "    accuracy                           0.75      1405\n",
      "   macro avg       0.70      0.75      0.71      1405\n",
      "weighted avg       0.80      0.75      0.77      1405\n",
      "\n",
      "\n",
      "Logistic Regression Classifier classification report:\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "          No       0.92      0.73      0.81      1053\n",
      "         Yes       0.49      0.80      0.61       352\n",
      "\n",
      "    accuracy                           0.74      1405\n",
      "   macro avg       0.70      0.76      0.71      1405\n",
      "weighted avg       0.81      0.74      0.76      1405\n",
      "\n",
      "\n",
      "Random Forest Classifier classification report:\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "          No       0.86      0.84      0.85      1053\n",
      "         Yes       0.56      0.61      0.58       352\n",
      "\n",
      "    accuracy                           0.78      1405\n",
      "   macro avg       0.71      0.72      0.72      1405\n",
      "weighted avg       0.79      0.78      0.79      1405\n",
      "\n",
      "\n",
      "Gradient Boosting Classifier classification report:\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "          No       0.89      0.80      0.84      1053\n",
      "         Yes       0.54      0.69      0.60       352\n",
      "\n",
      "    accuracy                           0.77      1405\n",
      "   macro avg       0.71      0.74      0.72      1405\n",
      "weighted avg       0.80      0.77      0.78      1405\n",
      "\n",
      "\n",
      "SVM Classifier classification report:\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "          No       0.89      0.77      0.83      1053\n",
      "         Yes       0.52      0.73      0.60       352\n",
      "\n",
      "    accuracy                           0.76      1405\n",
      "   macro avg       0.71      0.75      0.72      1405\n",
      "weighted avg       0.80      0.76      0.77      1405\n",
      "\n",
      "\n"
     ]
    }
   ],
   "source": [
    "# For CSV, use pandas.read_csv\n",
    "\n",
    "df = pd.read_csv(\"Telco-Customer-Churn.csv\")\n",
    "df.drop(['customerID'], axis=1, inplace=True)\n",
    "# Coerce the conversion of TotalCharges column to float\n",
    "df['TotalCharges'] = pd.to_numeric(df['TotalCharges'], errors='coerce')\n",
    "# Remove the duplicate rows\n",
    "df = df.drop_duplicates()\n",
    "\n",
    "cols_to_replace = ['OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'MultipleLines']\n",
    "df[cols_to_replace] = df[cols_to_replace].replace('No internet service', 'No').replace('No phone service', 'No')\n",
    "\n",
    "\n",
    "from sklearn.model_selection import train_test_split\n",
    "\n",
    "# split the data into features (X) and target variable (y)\n",
    "X = df.drop('Churn', axis=1)\n",
    "y = df['Churn']\n",
    "\n",
    "# split the data into train and test sets\n",
    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
    "\n",
    "# Identify numeric and non-numeric columns\n",
    "num_cols = X.select_dtypes(include=[np.number]).columns.tolist()\n",
    "cat_cols = X.select_dtypes(exclude=[np.number]).columns.tolist()\n",
    "\n",
    "\n",
    "'''creating copy of the categorical features and numerical features\n",
    "before imputing null value to avoid modifying the orginal dataset'''\n",
    "\n",
    "X_train_cat = X_train[cat_cols].copy()\n",
    "X_train_num = X_train[num_cols].copy()\n",
    "\n",
    "X_test_cat = X_test[cat_cols].copy()\n",
    "X_test_num = X_test[num_cols].copy()\n",
    "\n",
    "from sklearn.impute import SimpleImputer\n",
    "from sklearn.pipeline import Pipeline\n",
    "from sklearn.preprocessing import OneHotEncoder\n",
    "from sklearn.compose import ColumnTransformer\n",
    "\n",
    "# Creating imputer variables\n",
    "numerical_imputer = SimpleImputer(strategy = \"mean\")\n",
    "categorical_imputer = SimpleImputer(strategy = \"most_frequent\")\n",
    "\n",
    "\n",
    "# Define the column transformer\n",
    "categorical_features = cat_cols\n",
    "categorical_transformer = Pipeline(steps=[\n",
    "    ('onehot', OneHotEncoder(handle_unknown='ignore', categories='auto', sparse=False))\n",
    "])\n",
    "preprocessor = ColumnTransformer(\n",
    "    transformers=[\n",
    "        ('cat', categorical_transformer, categorical_features)\n",
    "    ])\n",
    "\n",
    "# Fitting the Imputer\n",
    "X_train_cat_imputed = categorical_imputer.fit_transform(X_train_cat)\n",
    "X_train_num_imputed = numerical_imputer.fit_transform(X_train_num)\n",
    "\n",
    "X_test_cat_imputed = categorical_imputer.fit_transform(X_test_cat)\n",
    "X_test_num_imputed = numerical_imputer.fit_transform(X_test_num)\n",
    "\n",
    "encoder=OneHotEncoder(handle_unknown='ignore')\n",
    "\n",
    "# encoding the xtrain categories and converting to a dataframe\n",
    "X_train_cat_encoded = encoder.fit(X_train_cat_imputed)\n",
    "X_train_cat_encoded = pd.DataFrame(encoder.transform(X_train_cat_imputed).toarray(),\n",
    "                                   columns=encoder.get_feature_names_out(cat_cols))\n",
    "\n",
    "# encoding the xeval categories and converting to a dataframe\n",
    "X_test_cat_encoded = encoder.fit(X_test_cat_imputed)\n",
    "X_test_cat_encoded = pd.DataFrame(encoder.transform(X_test_cat_imputed).toarray(),\n",
    "                                   columns=encoder.get_feature_names_out(cat_cols))\n",
    "\n",
    "\n",
    "from sklearn.preprocessing import StandardScaler\n",
    "\n",
    "scaler= StandardScaler()\n",
    "\n",
    "X_train_num_scaled = scaler.fit_transform(X_train_num_imputed)\n",
    "X_train_num_sc = pd.DataFrame(X_train_num_scaled, columns = num_cols)\n",
    "\n",
    "X_test_num_scaled = scaler.fit_transform(X_test_num_imputed)\n",
    "X_test_num_sc = pd.DataFrame(X_test_num_scaled, columns = num_cols)\n",
    "\n",
    "X_train_df = pd.concat([X_train_num_sc,X_train_cat_encoded], axis =1)\n",
    "X_test_df = pd.concat([X_test_num_sc,X_test_cat_encoded], axis =1)\n",
    "\n",
    "\n",
    "#Training over SMOTE-balanced data with roc_auc scoring \n",
    "\n",
    "\n",
    "from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier, RandomForestClassifier\n",
    "from sklearn.linear_model import LogisticRegression\n",
    "from sklearn.svm import SVC\n",
    "from sklearn.model_selection import cross_val_score\n",
    "from sklearn.metrics import roc_auc_score\n",
    "from imblearn.over_sampling import SMOTE\n",
    "\n",
    "# initialize SMOTE\n",
    "sm = SMOTE(random_state=42)\n",
    "\n",
    "# fit SMOTE on the training data and resample it\n",
    "X_train_resampled, y_train_resampled = sm.fit_resample(X_train_df, y_train)\n",
    "\n",
    "# print class counts before and after SMOTE\n",
    "print(f'Class counts before SMOTE: {y_train.value_counts()}')\n",
    "print(f'Class counts after SMOTE: {y_train_resampled.value_counts()}')\n",
    "\n",
    "# create a dictionary of models to fit\n",
    "models = {\n",
    "    'AdaBoost Classifier': AdaBoostClassifier(),\n",
    "    'Logistic Regression Classifier': LogisticRegression(),\n",
    "    'Random Forest Classifier': RandomForestClassifier(),\n",
    "    'Gradient Boosting Classifier': GradientBoostingClassifier(),\n",
    "    'SVM Classifier': SVC(probability=True)\n",
    "}\n",
    "\n",
    "# iterate over the models and fit each one to the resampled training data\n",
    "for name, model in models.items():\n",
    "    model.fit(X_train_resampled, y_train_resampled)\n",
    "    \n",
    "# evaluate each model using cross-validation based on ROC-AUC\n",
    "roc_auc_scores = {}\n",
    "for name, model in models.items():\n",
    "    scores = cross_val_score(model, X_train_resampled, y_train_resampled, cv=5, scoring='roc_auc')\n",
    "    roc_auc_scores[name] = scores.mean()\n",
    "    \n",
    "# print the ROC-AUC scores for each model\n",
    "for name, score in roc_auc_scores.items():\n",
    "    print(f'{name}: {score}')\n",
    "\n",
    "# choose the model with the highest ROC-AUC score\n",
    "best_model_name = max(roc_auc_scores, key=roc_auc_scores.get)\n",
    "best_model = models[best_model_name]\n",
    "print(f'Best model: {best_model_name}')\n",
    "\n",
    "from sklearn.metrics import classification_report\n",
    "\n",
    "# iterate over the models and make predictions on the test data for each one\n",
    "for name, model in models.items():\n",
    "    # fit the model to the resampled training data\n",
    "    model.fit(X_train_resampled, y_train_resampled)\n",
    "    # make predictions on the test data\n",
    "    y_pred = model.predict(X_test_df)\n",
    "    # generate the classification report\n",
    "    report = classification_report(y_test, y_pred)\n",
    "    # print the classification report\n",
    "    print(f'{name} classification report:\\n{report}\\n')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "4aab6799",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['SeniorCitizen',\n",
       " 'tenure',\n",
       " 'MonthlyCharges',\n",
       " 'TotalCharges',\n",
       " 'gender_Female',\n",
       " 'gender_Male',\n",
       " 'Partner_No',\n",
       " 'Partner_Yes',\n",
       " 'Dependents_No',\n",
       " 'Dependents_Yes',\n",
       " 'PhoneService_No',\n",
       " 'PhoneService_Yes',\n",
       " 'MultipleLines_No',\n",
       " 'MultipleLines_Yes',\n",
       " 'InternetService_DSL',\n",
       " 'InternetService_Fiber optic',\n",
       " 'InternetService_No',\n",
       " 'OnlineSecurity_No',\n",
       " 'OnlineSecurity_Yes',\n",
       " 'OnlineBackup_No',\n",
       " 'OnlineBackup_Yes',\n",
       " 'DeviceProtection_No',\n",
       " 'DeviceProtection_Yes',\n",
       " 'TechSupport_No',\n",
       " 'TechSupport_Yes',\n",
       " 'StreamingTV_No',\n",
       " 'StreamingTV_Yes',\n",
       " 'StreamingMovies_No',\n",
       " 'StreamingMovies_Yes',\n",
       " 'Contract_Month-to-month',\n",
       " 'Contract_One year',\n",
       " 'Contract_Two year',\n",
       " 'PaperlessBilling_No',\n",
       " 'PaperlessBilling_Yes',\n",
       " 'PaymentMethod_Bank transfer (automatic)',\n",
       " 'PaymentMethod_Credit card (automatic)',\n",
       " 'PaymentMethod_Electronic check',\n",
       " 'PaymentMethod_Mailed check']"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X_train_df.columns.tolist()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "d53e6b9e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'gender' categories: ['Female' 'Male']\n",
      "Column 'SeniorCitizen' categories: [0 1]\n",
      "Column 'Partner' categories: ['Yes' 'No']\n",
      "Column 'Dependents' categories: ['No' 'Yes']\n",
      "Column 'tenure' categories: [ 1 34  2 45  8 22 10 28 62 13 16 58 49 25 69 52 71 21 12 30 47 72 17 27\n",
      "  5 46 11 70 63 43 15 60 18 66  9  3 31 50 64 56  7 42 35 48 29 65 38 68\n",
      " 32 55 37 36 41  6  4 33 67 23 57 61 14 20 53 40 59 24 44 19 54 51 26  0\n",
      " 39]\n",
      "Column 'PhoneService' categories: ['No' 'Yes']\n",
      "Column 'MultipleLines' categories: ['No' 'Yes']\n",
      "Column 'InternetService' categories: ['DSL' 'Fiber optic' 'No']\n",
      "Column 'OnlineSecurity' categories: ['No' 'Yes']\n",
      "Column 'OnlineBackup' categories: ['Yes' 'No']\n",
      "Column 'DeviceProtection' categories: ['No' 'Yes']\n",
      "Column 'TechSupport' categories: ['No' 'Yes']\n",
      "Column 'StreamingTV' categories: ['No' 'Yes']\n",
      "Column 'StreamingMovies' categories: ['No' 'Yes']\n",
      "Column 'Contract' categories: ['Month-to-month' 'One year' 'Two year']\n",
      "Column 'PaperlessBilling' categories: ['Yes' 'No']\n",
      "Column 'PaymentMethod' categories: ['Electronic check' 'Mailed check' 'Bank transfer (automatic)'\n",
      " 'Credit card (automatic)']\n",
      "Column 'MonthlyCharges' categories: [29.85 56.95 53.85 ... 63.1  44.2  78.7 ]\n",
      "Column 'TotalCharges' categories: [  29.85 1889.5   108.15 ...  346.45  306.6  6844.5 ]\n"
     ]
    }
   ],
   "source": [
    "for col in X.columns:\n",
    "    print(f\"Column '{col}' categories: {X[col].unique()}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "b6f7708a",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Best model: Random Forest Classifier\n"
     ]
    }
   ],
   "source": [
    "best_model_name = 'Random Forest Classifier'\n",
    "\n",
    "best_model = models[best_model_name]\n",
    "\n",
    "print(f'Best model: {best_model_name}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "2adb8c7e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "              precision    recall  f1-score   support\n",
      "\n",
      "          No       0.85      0.86      0.86      1053\n",
      "         Yes       0.57      0.56      0.56       352\n",
      "\n",
      "    accuracy                           0.78      1405\n",
      "   macro avg       0.71      0.71      0.71      1405\n",
      "weighted avg       0.78      0.78      0.78      1405\n",
      "\n"
     ]
    }
   ],
   "source": [
    "# Calculate the class weights\n",
    "class_weight = {\"No\": 1, \"Yes\": 10}\n",
    "\n",
    "# Initialize Logistic Regression model with class weights\n",
    "rf = RandomForestClassifier(class_weight=class_weight)\n",
    "\n",
    "# Fit the model to the training data\n",
    "rf.fit(X_train_resampled, y_train_resampled)\n",
    "\n",
    "# Predict the labels of the test set\n",
    "y_pred = rf.predict(X_test_df)\n",
    "\n",
    "# Generate the classification report\n",
    "report = classification_report(y_test, y_pred)\n",
    "print(report)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "3ca066e7",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "from joblib import dump\n",
    "import os\n",
    "\n",
    "# set the destination path to the \"export\" directory\n",
    "destination = \".\"\n",
    "\n",
    "# create a dictionary to store the objects and their filenames\n",
    "models = {\"numerical_imputer\": numerical_imputer,\n",
    "          \"categorical_imputer\": categorical_imputer,\n",
    "          \"encoder\": encoder,\n",
    "          \"scaler\": scaler,\n",
    "          \"Final_model\": best_model}\n",
    "\n",
    "# loop through the models and save them using joblib.dump()\n",
    "for name, model in models.items():\n",
    "    dump(model, os.path.join(destination, f\"{name}.joblib\"))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "2185d2f9",
   "metadata": {},
   "outputs": [],
   "source": [
    "#!pip freeze > requirements.txt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "8117c959",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO: Successfully saved requirements file in .\\requirements.txt\n"
     ]
    }
   ],
   "source": [
    "!pipreqs . --force"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "33af820b",
   "metadata": {},
   "outputs": [],
   "source": [
    "#!pip list --format=freeze > requirements.txt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "816b3fe9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "numerical_imputer saved successfully!\n",
      "categorical_imputer saved successfully!\n",
      "encoder saved successfully!\n",
      "scaler saved successfully!\n",
      "Final_model saved successfully!\n"
     ]
    }
   ],
   "source": [
    "for name, model in models.items():\n",
    "    dump(model, os.path.join(destination, f\"{name}.joblib\"))\n",
    "    if os.path.exists(os.path.join(destination, f\"{name}.joblib\")):\n",
    "        print(f\"{name} saved successfully!\")\n",
    "    else:\n",
    "        print(f\"{name} failed to save.\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 90,
   "id": "5143eadb",
   "metadata": {},
   "outputs": [],
   "source": [
    "destination = \".\"\n",
    "numerical_imputer = joblib.load(os.path.join(destination, \"numerical_imputer.joblib\"))\n",
    "categorical_imputer = joblib.load(os.path.join(destination, \"categorical_imputer.joblib\"))\n",
    "encoder = joblib.load(os.path.join(destination, \"encoder.joblib\"))\n",
    "scaler = joblib.load(os.path.join(destination, \"scaler.joblib\"))\n",
    "best_model = joblib.load(os.path.join(destination, \"Final_model.joblib\"))\n",
    "\n",
    "loaded_models = {\"numerical_imputer\": numerical_imputer,\n",
    "                 \"categorical_imputer\": categorical_imputer,\n",
    "                 \"encoder\": encoder,\n",
    "                 \"scaler\": scaler,\n",
    "                 \"Final_model\": best_model}\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}