File size: 2,278 Bytes
632dd70 2e29eb8 632dd70 2e29eb8 9196c2f 2e29eb8 0e81e1a 20e7301 0e81e1a 20e7301 2e29eb8 20e7301 632dd70 20e7301 632dd70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
library_name: transformers
license: apache-2.0
base_model: open-thoughts/OpenThinker-32B
tags:
- llama-factory
- full
- generated_from_trainer
- mlx
- mlx-my-repo
datasets:
- open-thoughts/open-thoughts-114k
model-index:
- name: OpenThinker-32B
results: []
---
# About:
**A fully open-source family of reasoning models built using a dataset derived by distilling DeepSeek-R1.**
**This model is a fine-tuned version of **[**__Qwen/Qwen2.5-32B-Instruct__**](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)** on the **[**__OpenThoughts-114k__**](https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k)** dataset.**
*Special thanks to the folks at Open Thoughts for fine-tuning this version of Qwen/Qwen2.5-32B-Instruct. More information about it can be found here:*
[https://huggingface.co/open-thoughts/OpenThinker-32B](https://huggingface.co/open-thoughts/OpenThinker-32B) (Base Model)
[https://github.com/open-thoughts/open-thoughts](https://github.com/open-thoughts/open-thoughts) (Open Thoughts Git Repo)
I simply converted it to MLX format with a quantization of 8-bit for better performance on Apple Silicon Macs.
## Other Types:
| Link | Type | Size| Notes |
|-------|-----------|-----------|-----------|
| [MLX] (https://huggingface.co/AlejandroOlmedo/OpenThinker-32B-8bit-mlx) | 8-bit | 34.80 GB | **Best Quality** |
| [MLX] (https://huggingface.co/AlejandroOlmedo/OpenThinker-32B-4bit-mlx) | 4-bit | 18.40 GB | Good Quality|
# AlejandroOlmedo/OpenThinker-32B-8bit-mlx
The Model [AlejandroOlmedo/OpenThinker-32B-8bit-mlx](https://huggingface.co/AlejandroOlmedo/OpenThinker-32B-8bit-mlx) was converted to MLX format from [open-thoughts/OpenThinker-32B](https://huggingface.co/open-thoughts/OpenThinker-32B) using mlx-lm version **0.20.5**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("AlejandroOlmedo/OpenThinker-32B-8bit-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|