File size: 1,790 Bytes
de292b5
 
 
7444544
de292b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7444544
de292b5
 
 
 
 
 
 
7444544
de292b5
7444544
 
de292b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7444544
 
 
de292b5
 
 
 
7444544
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
tags:
- ag_news-distilbert-base-uncased
- generated_from_trainer
datasets:
- ag_news
metrics:
- accuracy
model-index:
- name: clasificador-news
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: ag_news
      type: ag_news
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9033149171270718
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# clasificador-news

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ag_news dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4391
- Accuracy: 0.9033

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2513        | 1.0   | 715  | 0.3897          | 0.8978   |
| 0.1873        | 2.0   | 1430 | 0.4007          | 0.9088   |
| 0.074         | 3.0   | 2145 | 0.4391          | 0.9033   |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3