--- license: apache-2.0 datasets: - IlyaGusev/rulm inference: parameters: min_length: 20 max_new_tokens: 250 top_k: 50 top_p: 0.9 early_stopping: true no_repeat_ngram_size: 2 use_cache: true repetition_penalty: 1.5 length_penalty: 0.8 num_beams: 2 language: - ru library_name: transformers pipeline_tag: text-generation tags: - finance - code ---

WortegaLM 109m

# Model Summary > Это GPTneo like модель обученная с нуля на сете в 95gb кода, хабра, пикабу, новостей. Она умеет решать примитивные задачи, не пригодна для ZS FS, но идеальна как модель для студенческих проектов # Quick Start ```python from transformers import AutoTokenizer, AutoModelForCausalLM, tokenizer = AutoTokenizer.from_pretrained('AlexWortega/wortegaLM',padding_side='left') device = 'cuda' model = AutoModelForCausalLM.from_pretrained('AlexWortega/wortegaLM') model.resize_token_embeddings(len(tokenizer)) model.to(device) def generate_seqs(q,model, k=2): gen_kwargs = { "min_length": 20, "max_new_tokens": 100, "top_k": 50, "top_p": 0.7, "do_sample": True, "early_stopping": True, "no_repeat_ngram_size": 2, "eos_token_id": tokenizer.eos_token_id, "pad_token_id": tokenizer.eos_token_id, "use_cache": True, "repetition_penalty": 1.5, "length_penalty": 1.2, "num_beams": 4, "num_return_sequences": k } q = q t = tokenizer.encode(q, add_special_tokens=False, return_tensors='pt').to(device) g = model.generate(t, **gen_kwargs) generated_sequences = tokenizer.batch_decode(g, skip_special_tokens=False) return generated_sequences ```