--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: Fake-News-Detector results: [] --- # Fake-News-Detector This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0 | 0.09 | 100 | 0.0000 | 1.0 | | 0.0 | 0.19 | 200 | 0.0000 | 1.0 | | 0.0 | 0.28 | 300 | 0.0000 | 1.0 | | 0.0 | 0.37 | 400 | 0.0000 | 1.0 | | 0.0 | 0.47 | 500 | 0.0000 | 1.0 | | 0.0 | 0.56 | 600 | 0.0000 | 1.0 | | 0.0 | 0.65 | 700 | 0.0000 | 1.0 | | 0.0 | 0.75 | 800 | 0.0000 | 1.0 | | 0.0 | 0.84 | 900 | 0.0000 | 1.0 | | 0.0 | 0.93 | 1000 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1