--- language: en ---

**Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: detection https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ``` ### Run Configuration { "train_path": "/workspace/donut_train/doctr/train/", "val_path": "/workspace/donut_train/doctr/val/", "arch": "db_resnet50", "name": "detection_test", "epochs": 15, "batch_size": 2, "device": 0, "save_interval_epoch": false, "input_size": 1024, "lr": 0.001, "weight_decay": 0, "workers": 16, "resume": null, "test_only": false, "freeze_backbone": false, "show_samples": false, "wb": true, "push_to_hub": true, "pretrained": false, "rotation": false, "eval_straight": false, "sched": "poly", "amp": false, "find_lr": false, "early_stop": false, "early_stop_epochs": 5, "early_stop_delta": 0.01 }