Alfahluzi/bert2bert-extreme-dropout-0.5-lr-5e-05-batchsize-4-encmaxlen-2048-decmaxlen-512 train 5 epochs with 4 batch size
Browse files
README.md
CHANGED
@@ -13,18 +13,18 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
# bert2bert-extreme-dropout-0.5-lr-5e-05-batchsize-4-encmaxlen-2048-decmaxlen-512
|
15 |
|
16 |
-
This model
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss:
|
19 |
-
- R1 Precision: 0.
|
20 |
-
- R1 Recall: 0.
|
21 |
-
- R1 Fmeasure: 0.
|
22 |
- R2 Precision: 0.0
|
23 |
- R2 Recall: 0.0
|
24 |
- R2 Fmeasure: 0.0
|
25 |
-
- Rl Precision: 0.
|
26 |
-
- Rl Recall: 0.
|
27 |
-
- Rl Fmeasure: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -44,8 +44,8 @@ More information needed
|
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
- learning_rate: 5e-05
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
@@ -54,18 +54,18 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step
|
58 |
-
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
|
65 |
|
66 |
### Framework versions
|
67 |
|
68 |
- Transformers 4.38.2
|
69 |
-
- Pytorch 2.2.1
|
70 |
- Datasets 2.18.0
|
71 |
- Tokenizers 0.15.2
|
|
|
13 |
|
14 |
# bert2bert-extreme-dropout-0.5-lr-5e-05-batchsize-4-encmaxlen-2048-decmaxlen-512
|
15 |
|
16 |
+
This model was trained from scratch on the id_liputan6 dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 8.6177
|
19 |
+
- R1 Precision: 0.0188
|
20 |
+
- R1 Recall: 0.0105
|
21 |
+
- R1 Fmeasure: 0.0133
|
22 |
- R2 Precision: 0.0
|
23 |
- R2 Recall: 0.0
|
24 |
- R2 Fmeasure: 0.0
|
25 |
+
- Rl Precision: 0.0188
|
26 |
+
- Rl Recall: 0.0105
|
27 |
+
- Rl Fmeasure: 0.0133
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 2
|
48 |
+
- eval_batch_size: 2
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | R1 Precision | R1 Recall | R1 Fmeasure | R2 Precision | R2 Recall | R2 Fmeasure | Rl Precision | Rl Recall | Rl Fmeasure |
|
58 |
+
|:-------------:|:-----:|:------:|:---------------:|:------------:|:---------:|:-----------:|:------------:|:---------:|:-----------:|:------------:|:---------:|:-----------:|
|
59 |
+
| 7.0769 | 1.0 | 96942 | 7.5336 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
60 |
+
| 7.1014 | 2.0 | 193884 | 7.6800 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
61 |
+
| 7.0648 | 3.0 | 290826 | 8.1448 | 0.0188 | 0.0105 | 0.0133 | 0.0 | 0.0 | 0.0 | 0.0188 | 0.0105 | 0.0133 |
|
62 |
+
| 7.0594 | 4.0 | 387768 | 8.4518 | 0.0188 | 0.0105 | 0.0133 | 0.0 | 0.0 | 0.0 | 0.0188 | 0.0105 | 0.0133 |
|
63 |
+
| 7.0322 | 5.0 | 484710 | 8.6177 | 0.0188 | 0.0105 | 0.0133 | 0.0 | 0.0 | 0.0 | 0.0188 | 0.0105 | 0.0133 |
|
64 |
|
65 |
|
66 |
### Framework versions
|
67 |
|
68 |
- Transformers 4.38.2
|
69 |
+
- Pytorch 2.2.1
|
70 |
- Datasets 2.18.0
|
71 |
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1002850732
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:082e249bbd0c1c090f7be9e9d81d21b5ab5e269f86208c86e6639ee0b05c3b9c
|
3 |
size 1002850732
|
runs/Mar18_09-33-55_c10457f3b6ab/events.out.tfevents.1710754435.c10457f3b6ab.370.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd5e77b0d2589ca82a01c1aee3f61c09ebeb1ee14c562a86fac9e4b0601f3239
|
3 |
+
size 221584
|