--- base_model: unsloth/Mistral-Nemo-Base-2407 library_name: peft license: apache-2.0 tags: - axolotl - generated_from_trainer model-index: - name: mn-inf-qlora results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml # Set up for use on 2x24gb cards # huggingface-cli login --token $hf_key && wandb login $wandb_key # python -m axolotl.cli.preprocess mn-inf-lora.yml # accelerate launch -m axolotl.cli.train mn-inf-lora.yml # python -m axolotl.cli.merge_lora ms-adventure-s.yml # huggingface-cli upload ToastyPigeon/ms-type1-adventure-s adventure-workspace/merged . --private base_model: unsloth/Mistral-Nemo-Base-2407 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false sequence_len: 8192 # 99% vram min_sample_len: 128 bf16: true fp16: tf32: false flash_attention: true special_tokens: # Data dataset_prepared_path: last_run_prepared datasets: - path: botmall/bodinforg-completions type: completion warmup_steps: 20 shuffle_merged_datasets: true save_safetensors: true # WandB wandb_project: Mistral-Nemo-Inflation wandb_entity: # Iterations num_epochs: 1 # Output output_dir: ./adventure-workspace hub_model_id: botmall/mn-inf-qlora hub_strategy: "checkpoint" # Sampling sample_packing: true pad_to_sequence_len: true # Batching gradient_accumulation_steps: 1 micro_batch_size: 1 eval_batch_size: 1 gradient_checkpointing: 'unsloth' gradient_checkpointing_kwargs: use_reentrant: true unsloth_cross_entropy_loss: true #unsloth_lora_mlp: true #unsloth_lora_qkv: true #unsloth_lora_o: true # Evaluation val_set_size: 40 evals_per_epoch: 5 eval_table_size: eval_max_new_tokens: 256 eval_sample_packing: false # LoRA adapter: qlora lora_model_dir: lora_r: 32 lora_alpha: 64 lora_dropout: 0.1 lora_target_linear: lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: # Optimizer optimizer: paged_adamw_8bit # adamw_8bit lr_scheduler: cosine learning_rate: 0.0001 cosine_min_lr_ratio: 0.1 weight_decay: 0.01 max_grad_norm: 10.0 # Misc train_on_inputs: false group_by_length: false early_stopping_patience: local_rank: logging_steps: 1 xformers_attention: debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3.json # previously blank fsdp: fsdp_config: # Checkpoints resume_from_checkpoint: saves_per_epoch: 1 plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true ```

# mn-inf-qlora This model is a fine-tuned version of [unsloth/Mistral-Nemo-Base-2407](https://huggingface.co/unsloth/Mistral-Nemo-Base-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 2 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2853 | 0.0057 | 1 | 2.3231 | | 2.2576 | 0.2102 | 37 | 2.2478 | | 2.1671 | 0.4205 | 74 | 2.2352 | | 2.2319 | 0.6307 | 111 | 2.2259 | | 2.174 | 0.8409 | 148 | 2.2226 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0