{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f507a7fce80>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683751253538718942, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPc6cj6yKTW/tmOZPrvjcT8QwlQ/a5C0PUL+1T4gkHq/w9xAP9yI0z/sHg8/bmWQv2xxvj4Mf389hmsLP8KeNb1uZOm+RvDdP2ZpXj9Zt5u/vRI5PvpYzD3Ho4Y+FjYXPv01kj43lpw+VUPmPlhF1T4mX1++vVNYv+ykGT6Sn52+tfiiPjWj3T3MAQo/dPVPPUkmSD9b2zg9p59mPo5AiLwWxdK+E/OhPFCASr1/Z+I9Aa2tvLtKJDy0Ft4+nJuSPXm6eb+vXHE8G3gMv2LMBb39NZI+N5acPlVD5j5YRdU+loWjO7waj78YQsy+gYq4vimGlz4rpwA+K2MRP3Mp+j4a2Cg/o/XCumAZZT7gDy+9W7ZTv27o0Du1N/K++oxnPW2O2j2uk945D0VpPawyNj3jg4C/TcFRPO4mC797xgm9/TWSPjeWnD5VQ+Y+WEXVPoHaOj/quxq/ZzrZv6dJwr9AaRU/qKGoPlrUxT6P8kw/24JqPsJaJr/JTWY+r+w7vbBpG7+lIDW9hjGWv2EKkL6UzDI/Ds2rviQcNb83njG9v46Av7c9RD0xNL48z9G3vf01kj43lpw+VUPmPlhF1T6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABuhEq1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWf01PQAAAADECADAAAAAADOfDT4AAAAAd0/pPwAAAABhlfu6AAAAABys5D8AAAAAVa4BPgAAAABfOeC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOqcBtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMzN+D0AAAAA5f/YvwAAAABf9UK8AAAAADHw6z8AAAAA7wcWPQAAAACZ0uU/AAAAAOS+7bsAAAAAWQb1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF06h7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDuC229AAAAAPzX2r8AAAAA1Z5dvAAAAAAA5fc/AAAAAJb/gbwAAAAAFR/zPwAAAAAx5pQ9AAAAACRQ9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACVmMs2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANewEvgAAAABaGPu/AAAAAIGXuz0AAAAAtWvrPwAAAACN6DQ9AAAAAFyf6D8AAAAAJ6I9PAAAAACAkwDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIqnvjU/fO6MAWyUTegDjAF0lEdAqdVjTnaFmHV9lChoBkdAiU41inYQKGgHTegDaAhHQKna7VPva111fZQoaAZHQIm2i5qdpZhoB03oA2gIR0Cp3AVAqur7dX2UKGgGR0CF6uosqaw2aAdN6ANoCEdAqd3GSZBsynV9lChoBkdAiTfkJ8fFJmgHTegDaAhHQKnjFrcj7hx1fZQoaAZHQIqQhc3VColoB03oA2gIR0Cp6LRuTA32dX2UKGgGR0CLl0tnPE88aAdN6ANoCEdAqenHDpC8e3V9lChoBkdAia1fa6BiC2gHTegDaAhHQKnril54W1t1fZQoaAZHQIm0L2+PBBRoB03oA2gIR0Cp8NMsH0K7dX2UKGgGR0CJpVPppvgnaAdN6ANoCEdAqfZSV4X403V9lChoBkdAiuWxx95Qg2gHTegDaAhHQKn3W6vJRwZ1fZQoaAZHQIhAzCemNzdoB03oA2gIR0Cp+RzHS4OMdX2UKGgGR0CJ47dB0IToaAdN6ANoCEdAqf5mwX668XV9lChoBkdAjE/jCxeLN2gHTegDaAhHQKoD7+UhV2l1fZQoaAZHQIllXgeii7FoB03oA2gIR0CqBP2pQ1rJdX2UKGgGR0CJjKCZF5OaaAdN6ANoCEdAqga9XJYDDHV9lChoBkdAioWehf0Eo2gHTegDaAhHQKoMAlpGnXN1fZQoaAZHQIoSRsANoaloB03oA2gIR0CqEX2sJY1YdX2UKGgGR0CJYgAxzq8laAdN6ANoCEdAqhKJ0lqrR3V9lChoBkdAiGdb+cYqG2gHTegDaAhHQKoUSOZssQN1fZQoaAZHQIqHJNGmUGFoB03oA2gIR0CqGYm6f8MvdX2UKGgGR0CLneSPluFYaAdN6ANoCEdAqh8dhNM4+HV9lChoBkdAiuat7SiM52gHTegDaAhHQKogMr6tT1l1fZQoaAZHQIujKhUR3/xoB03oA2gIR0CqIflh5PdmdX2UKGgGR0CKYM/eLvTgaAdN6ANoCEdAqidQOYplSXV9lChoBkdAiw/iF0xM4GgHTegDaAhHQKoszR1HOKR1fZQoaAZHQIsNGa6STyJoB03oA2gIR0CqLdndfsu4dX2UKGgGR0CLGhxPwd8zaAdN6ANoCEdAqi+av9tMwnV9lChoBkdAi3yd6LOzIGgHTegDaAhHQKo05K7I1cd1fZQoaAZHQIpveeQMhHNoB03oA2gIR0CqOnc2Jiy6dX2UKGgGR0CKG/Xko4MnaAdN6ANoCEdAqjuPDDTBqXV9lChoBkdAiJd5nctXgmgHTegDaAhHQKo9UvxH5Jt1fZQoaAZHQIlAcxbjcVRoB03oA2gIR0CqQqL/S6UadX2UKGgGR0CKSk+C9RJmaAdN6ANoCEdAqkgo86mwaHV9lChoBkdAiUCbDEWIoGgHTegDaAhHQKpJND3ueBh1fZQoaAZHQIRMdV3ljmVoB03oA2gIR0CqSvnVG0/odX2UKGgGR0CKrpIwM6RyaAdN6ANoCEdAqlA7xRVIZ3V9lChoBkdAhTUH8TBZZGgHTegDaAhHQKpVv2A5Jbt1fZQoaAZHQIrWWTkhib5oB03oA2gIR0CqVswAuIykdX2UKGgGR0CKmdcIJJGwaAdN6ANoCEdAqliPcxj8UHV9lChoBkdAgQo+J53Tu2gHTegDaAhHQKpdyMWoFV11fZQoaAZHQIq8vokiUxFoB03oA2gIR0CqY0kQ5FPSdX2UKGgGR0CJlMWfK6nSaAdN6ANoCEdAqmRa5byH23V9lChoBkdAizMp3xFy72gHTegDaAhHQKpmG46Oo5x1fZQoaAZHQIm/EhaC+URoB03oA2gIR0Cqa2Ky4Wk8dX2UKGgGR0CKQ8QcPvroaAdN6ANoCEdAqnDxJiAlOXV9lChoBkdAi4jfp2U0N2gHTegDaAhHQKpyAMGX5WR1fZQoaAZHQIvpzqv/zatoB03oA2gIR0Cqc8yxzJZGdX2UKGgGR0CKPFnUUfxMaAdN6ANoCEdAqnkTmhdt23V9lChoBkdAiabGKyfL92gHTegDaAhHQKp+kLw4KhN1fZQoaAZHQIt/vU4JeE9oB03oA2gIR0Cqf57ONYKZdX2UKGgGR0CK7M2xY7q6aAdN6ANoCEdAqoFiPhhpg3V9lChoBkdAiwttu1ndwmgHTegDaAhHQKqGp5WRzRx1fZQoaAZHQIpOwwEhaDBoB03oA2gIR0CqjC/h/Aj6dX2UKGgGR0CK8Gl54W1uaAdN6ANoCEdAqo1DAi3XqnV9lChoBkdAhF6be/Ho5mgHTegDaAhHQKqPDoJzDGd1fZQoaAZHQInJp4fOlftoB03oA2gIR0CqlFiHARChdX2UKGgGR0CJfl6lchTwaAdN6ANoCEdAqpneoNutOnV9lChoBkdAimyR9G7SRmgHTegDaAhHQKqa6rzXjEN1fZQoaAZHQIpx/IKc/dJoB03oA2gIR0CqnKeWnjyXdX2UKGgGR0CK3Lhn8KoiaAdN6ANoCEdAqqHqLS/j83V9lChoBkdAir/2P91loWgHTegDaAhHQKqnbVrhzeZ1fZQoaAZHQIlwJwS8J2NoB03oA2gIR0CqqHfyXlbNdX2UKGgGR0CJ3BjxTbWVaAdN6ANoCEdAqqo6H2ys0nV9lChoBkdAia55eqrBCWgHTegDaAhHQKqvgofjjrB1fZQoaAZHQIni2BH09QpoB03oA2gIR0CqtQpYkmhNdX2UKGgGR0CKLCXKKYReaAdN6ANoCEdAqrYYhje9BnV9lChoBkdAihA7nHNorWgHTegDaAhHQKq31/bTMJR1fZQoaAZHQIj/Ue4kNWloB03oA2gIR0CqvRpS75EddX2UKGgGR0CJ+Ccjqv/zaAdN6ANoCEdAqsKoI2OyV3V9lChoBkdAiyRLLQokRmgHTegDaAhHQKrDvDuSfUZ1fZQoaAZHQIlM8v24/eNoB03oA2gIR0CqxX1XmvGIdX2UKGgGR0CLNVePaL4vaAdN6ANoCEdAqsrNDneSCHV9lChoBkdAiR6NBOYYzmgHTegDaAhHQKrQSSJ0nw51fZQoaAZHQIlxO8qWkadoB03oA2gIR0Cq0VR4QjD9dX2UKGgGR0CHLuTh5xBFaAdN6ANoCEdAqtMazollb3V9lChoBkdAibSb1qWTo2gHTegDaAhHQKrYXpKzzEt1fZQoaAZHQIlY7gEU0vZoB03oA2gIR0Cq3feC9RJmdX2UKGgGR0CIcgDoQnQZaAdN6ANoCEdAqt8KO/+Kj3V9lChoBkdAiVHZa/yoXWgHTegDaAhHQKrgy4hllK91fZQoaAZHQIfC9h9b5dpoB03oA2gIR0Cq5g/sE7nxdX2UKGgGR0CKgYwM6RyPaAdN6ANoCEdAquuXfEXLvHV9lChoBkdAib2RUWEbpGgHTegDaAhHQKrspepn6Ed1fZQoaAZHQIUcUK7ZnL9oB03oA2gIR0Cq7mURe1KHdX2UKGgGR0CHZ0HRkVesaAdN6ANoCEdAqvOud3B55nV9lChoBkdAil+a19fCymgHTegDaAhHQKr5SLmZE2J1fZQoaAZHQIburDIikftoB03oA2gIR0Cq+lZDRc/udX2UKGgGR0CG/aHD7655aAdN6ANoCEdAqvwgyylennV9lChoBkdAinomX5WRzWgHTegDaAhHQKsBa9sabWp1fZQoaAZHQIofUWGh24doB03oA2gIR0CrBuryUcGUdX2UKGgGR0CJGJua4MF2aAdN6ANoCEdAqwf4pjMFEHV9lChoBkdAicqJE6T4cmgHTegDaAhHQKsJuGYa5wx1fZQoaAZHQIrJql7+kxhoB03oA2gIR0CrDwGQ0XP7dX2UKGgGR0CLDGi22G7BaAdN6ANoCEdAqxSGb/ffoHV9lChoBkdAiaC/YjB2wGgHTegDaAhHQKsVm4tpVS51fZQoaAZHQIq0B1/2Cd1oB03oA2gIR0CrF15IYm9hdX2UKGgGR0CJtajZ+QU6aAdN6ANoCEdAqxy0YVIqb3V9lChoBkdAimE+9zwMIGgHTegDaAhHQKsiP4dp7C11fZQoaAZHQIuNMTN+so5oB03oA2gIR0CrI0vfTCtSdX2UKGgGR0CK/e0KJEYwaAdN6ANoCEdAqyUMPjGT93VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}