Upload my first model DeepRL
Browse files- PPO-lunar.zip +3 -0
- PPO-lunar/_stable_baselines3_version +1 -0
- PPO-lunar/data +99 -0
- PPO-lunar/policy.optimizer.pth +3 -0
- PPO-lunar/policy.pth +3 -0
- PPO-lunar/pytorch_variables.pth +3 -0
- PPO-lunar/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO-lunar.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1da87ea2009284b9f125e69c4ad312eae5c3e41dfb1e54dac0e954395777add0
|
3 |
+
size 147937
|
PPO-lunar/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
PPO-lunar/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x781618d617e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781618d61870>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781618d61900>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781618d61990>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x781618d61a20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x781618d61ab0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x781618d61b40>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781618d61bd0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x781618d61c60>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781618d61cf0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781618d61d80>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x781618d61e10>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x781618efbfc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1699285796674123893,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpvGL4PyyW86uXcvF7NbLtUX6w9C3tDPAAAgD8AAIA/TeBXvb/6Vj8pDwK+BQgyvzZvs71qfZq8AAAAAAAAAABmtkm9hcc0P9Z+grzbnAy/wKvpvRqVJbwAAAAAAAAAAMBCvT21aIg/tJ46PoJWIb+tSeQ9/jzIPQAAAAAAAAAAMxmFPY+OS7qeySwzUOk9sOLyNDqD8NCzAACAPwAAAACGZwc+aERsP3DKrj5CLxa/IW8PPj6JMz0AAAAAAAAAAFpKcL76qGE/kKPAvoGgCr+msZq+Fln0uwAAAAAAAAAAZh26vSCskz7Ezja6hQfTvgtaDb2Wuxw9AAAAAAAAAABtDgy+NiYeP2Ljw70ePfu+oYkevo66gT0AAAAAAAAAAKbi071c82+6Meu5uZO3z7TODjg63e/ZOAAAgD8AAAAAE9dOPoiL+rxzHQG7QKWUOY+cXb5yxi86AACAPwAAgD8AxiU8FC7yN7UzHrh3cwcx+3/Ou6ZdQDcAAIA/AACAPxOmJT51gBM+cI4mvjRvmr6qS7i8JksLvQAAAAAAAAAAvbGOPp7+Zz8WNpE+VTUEv43GuT55SMs8AAAAAAAAAABzbhy+Q9Y8vPqVKLx/Waa6SeOfPesWiTsAAIA/AACAP5ovIT7sAfU+GqlZvRq5574YQMI9VCeKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4PTLfUF0SMAWyUS8yMAXSUR0CWQ4T/hl19dX2UKGgGR0ByWpB2OhkBaAdL9WgIR0CWQ+fyPMjedX2UKGgGR0Bi0HWe6I3zaAdN6ANoCEdAlkPoAKfFrHV9lChoBkdAcZ2jmSyMUGgHS+doCEdAlkRzZg5R0nV9lChoBkdAb0w25QP7N2gHS8xoCEdAlkTBZMcp9nV9lChoBkdAcxgmCyyD7WgHS+toCEdAlkW7xVhkRXV9lChoBkdAc6Sr9ETg22gHS+poCEdAlkYC0F8ohXV9lChoBkdAcy+RnOB192gHS/VoCEdAlkYYaP0ZnHV9lChoBkdAcHRVlwtJ4GgHS+xoCEdAlkfLCBPKuHV9lChoBkdAX4RMxoIv8WgHTegDaAhHQJZJHF1jiGZ1fZQoaAZHQHH7+Hi3ocJoB0vZaAhHQJZJgl3Qla91fZQoaAZHQHFczIBBAwBoB00CAWgIR0CWSbHWjGkvdX2UKGgGR0BxPP3Zf2K3aAdLwGgIR0CWSbe1KGtZdX2UKGgGR0BzR61+iJwbaAdL3mgIR0CWSdShJyyVdX2UKGgGR0BzbcrvsqrjaAdL5GgIR0CWSeVtGd7OdX2UKGgGR0Bwag8NhE0BaAdL2WgIR0CWShmdRR/FdX2UKGgGR0BvGiuB+WnkaAdLvmgIR0CWSiIo3JgcdX2UKGgGR0Bwzm0Xxe9jaAdL32gIR0CWSoIRywOfdX2UKGgGR0BxlDyrgflqaAdLs2gIR0CWSvy5Zr57dX2UKGgGR0BwnShSLqD9aAdLv2gIR0CWS7Q3xWkrdX2UKGgGR0BxJ/ww0wajaAdL9mgIR0CWS/3pfQa8dX2UKGgGR0BwgPd0q6OHaAdL0WgIR0CWTD42S+xodX2UKGgGR0BtuhCOWBz4aAdLxGgIR0CWUCb3oLXudX2UKGgGR0BxCUX2ugYhaAdLwWgIR0CWUKQsPJ7tdX2UKGgGR0BykzYsd1dPaAdNCAFoCEdAllDjhLoOhHV9lChoBkdAcaKUMoc7yWgHS71oCEdAllDkIPbwjXV9lChoBkdAb7CiY9gWrWgHS89oCEdAllD694/u9nV9lChoBkdAcNsGTcIqsmgHS7NoCEdAllEiOinHenV9lChoBkdAcsbXbM5fdGgHS+hoCEdAllE2NzbN8nV9lChoBkdAcRxP6sQumWgHS9VoCEdAllFABgeA/nV9lChoBkdAcIeoFV1fV2gHS9doCEdAllFyU9pyqHV9lChoBkdAcjkF6Rhc7mgHS/ZoCEdAllLcLa24NXV9lChoBkdAczDkTHsC1mgHS8toCEdAllPYEW69TXV9lChoBkdAclUE7W/ag2gHTQoBaAhHQJZW/xCpm291fZQoaAZHQHFiPLs8gZFoB00tAWgIR0CWV+wco6S1dX2UKGgGR0BxIbRZ2ZAqaAdLqGgIR0CWWCiyprDZdX2UKGgGR0BwMxFiKBNFaAdLwGgIR0CWWOtWuHN5dX2UKGgGR0BvzVMj/uLKaAdLx2gIR0CWWQQvYe1bdX2UKGgGR0BxYjLyMDOkaAdLyWgIR0CWWVOcUdq+dX2UKGgGR0BfycKTjebeaAdN6ANoCEdAllmAU+LWJHV9lChoBkdAbNb2i+L3sWgHS9BoCEdAllndSMtK7XV9lChoBkdAbEUO2iL2pWgHS9NoCEdAllodc4YJmnV9lChoBkdAbhLAYYR/VmgHS9VoCEdAllp0z9CNTHV9lChoBkdAcogaBI4EOmgHS/NoCEdAllp16eGwinV9lChoBkdAcT05XEIgNmgHS+doCEdAllqnuuzQeHV9lChoBkdAcEQtXPqs2mgHS8hoCEdAlluDE74i5nV9lChoBkdAYaEEbo8p1GgHTegDaAhHQJZdFKkEcKh1fZQoaAZHQHMG2fK6nR9oB0v3aAhHQJZeYaJhvzh1fZQoaAZHQG5xCjcmBvtoB0vAaAhHQJZe/wiJO351fZQoaAZHQHEJ4vSMLndoB0u7aAhHQJZgiLpA2Q51fZQoaAZHQHExC8FpwjtoB0vQaAhHQJZgvfaYeDF1fZQoaAZHQHIq5uAI6bRoB0uwaAhHQJZg/ReC04R1fZQoaAZHQHCpiOq//NtoB0vgaAhHQJZhM5DJEIB1fZQoaAZHQHEB4Zl4C6poB0vOaAhHQJZhajnFHax1fZQoaAZHQHCbzKkl/pdoB0veaAhHQJZiWmO2iL51fZQoaAZHQHHpgBLf1pVoB0vPaAhHQJZifWEsasJ1fZQoaAZHQHKeNHDrJKdoB0vraAhHQJZi0r4Fia11fZQoaAZHQHCDsSTQmeFoB0u7aAhHQJZi56JIlMR1fZQoaAZHQG+ISn1nM+xoB0vfaAhHQJZjFkOI68x1fZQoaAZHQHEklFc6eXloB0vvaAhHQJZjkPFvQ4V1fZQoaAZHQHItlmWdEstoB0v0aAhHQJZjj5sTFl11fZQoaAZHQHNAg+pwS8JoB0vsaAhHQJZlCcG1QZZ1fZQoaAZHQHBBCF0xM39oB0vyaAhHQJZmk6NlyzZ1fZQoaAZHQHDYBdld1MdoB0vMaAhHQJZm2jsUqQR1fZQoaAZHQG+n0zj3mFJoB0vTaAhHQJZm4GHHmzV1fZQoaAZHQHOaEgfU4JhoB0vNaAhHQJZnBwsGxD91fZQoaAZHQHHA+VPepGZoB0vlaAhHQJZnRBJI1+B1fZQoaAZHQHGZ3OW0JF9oB0vVaAhHQJZnZT1kDp11fZQoaAZHQHArBp5/smhoB0u8aAhHQJZn4V+I/JN1fZQoaAZHQHBnV/+bVjJoB0vTaAhHQJZn+GnGbTd1fZQoaAZHQHD/6JZW7vpoB0vWaAhHQJZoKjvd/KB1fZQoaAZHQG8LyHmA9V5oB0vBaAhHQJZo2nuRcNZ1fZQoaAZHQG680x20Re1oB0vbaAhHQJZo/U5MlC11fZQoaAZHQHGgHUMG5c1oB0vZaAhHQJZpfreIl+p1fZQoaAZHQHNpceCCjDdoB00NAWgIR0CWahGlANXpdX2UKGgGR0BxC0sWfseGaAdL2GgIR0CWayUt7KJVdX2UKGgGR0BzaxFpfx+baAdL1mgIR0CWbQ1M/QjVdX2UKGgGR0BvZ5+BpYcOaAdL02gIR0CWbSWvKU3XdX2UKGgGR0BvPa6e5Fw2aAdLuWgIR0CWbWfWtlqbdX2UKGgGR0Bx2PJeVs1saAdL4mgIR0CWbg10T101dX2UKGgGR0Bvugksz2vjaAdLymgIR0CWbiuq3mV8dX2UKGgGR0ByYMhEBsAOaAdNBAFoCEdAlm4+dwvQGHV9lChoBkdAcgiKF7D2rWgHS/poCEdAlm48eOn2qXV9lChoBkdAZOLQ6ZH/cWgHTegDaAhHQJZuRas6q811fZQoaAZHQHLllUlzEJloB0vwaAhHQJZuV+7UXpJ1fZQoaAZHQHIo97BwdbRoB0vqaAhHQJZuwibDuSh1fZQoaAZHQHDwfJ7sv7FoB0vHaAhHQJZu2MIeHSF1fZQoaAZHQG94EETxoZhoB0vEaAhHQJZvP9Hc1wZ1fZQoaAZHQHJrbBoEjgRoB0vqaAhHQJZvmC7K7qZ1fZQoaAZHQHIpWjKxLTRoB0vQaAhHQJZwEuBczIp1fZQoaAZHQHIZs3l0YCRoB0vsaAhHQJZx3OzIFNd1fZQoaAZHQHKPKkM1CPZoB0vUaAhHQJZy/8ZUDMh1fZQoaAZHQG+kiPhhpg1oB0u5aAhHQJZzSB8QZoB1fZQoaAZHQHJFzbBXS0BoB0vYaAhHQJZzcVRDTjN1fZQoaAZHQHBV8MAmzB1oB0vXaAhHQJZ0Ak1Mue11fZQoaAZHQHHWYqG1x85oB0u5aAhHQJZ0AL5RCQd1fZQoaAZHQHDjq5sj3VVoB0vVaAhHQJZ0I6BAfMh1fZQoaAZHQHKuajN6gNBoB0v+aAhHQJZ0Ubo8p1B1fZQoaAZHQHJF2/etSydoB0vlaAhHQJZ0lKDkELZ1fZQoaAZHQG6YUsWfseJoB0vRaAhHQJZ0lMURFql1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
PPO-lunar/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22ab4fbc0582200d4ef02cd3cdeaba6f86860b9c2344554af743c698a1ce11bb
|
3 |
+
size 88362
|
PPO-lunar/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0c65fd4137bd257640c688b0b3e8abc6101aa58f0b75236745aa36611352a01
|
3 |
+
size 43762
|
PPO-lunar/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
PPO-lunar/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.11 +/- 14.63
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x781618d617e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781618d61870>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781618d61900>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781618d61990>", "_build": "<function ActorCriticPolicy._build at 0x781618d61a20>", "forward": "<function ActorCriticPolicy.forward at 0x781618d61ab0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x781618d61b40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781618d61bd0>", "_predict": "<function ActorCriticPolicy._predict at 0x781618d61c60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781618d61cf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781618d61d80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x781618d61e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x781618efbfc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699285796674123893, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpvGL4PyyW86uXcvF7NbLtUX6w9C3tDPAAAgD8AAIA/TeBXvb/6Vj8pDwK+BQgyvzZvs71qfZq8AAAAAAAAAABmtkm9hcc0P9Z+grzbnAy/wKvpvRqVJbwAAAAAAAAAAMBCvT21aIg/tJ46PoJWIb+tSeQ9/jzIPQAAAAAAAAAAMxmFPY+OS7qeySwzUOk9sOLyNDqD8NCzAACAPwAAAACGZwc+aERsP3DKrj5CLxa/IW8PPj6JMz0AAAAAAAAAAFpKcL76qGE/kKPAvoGgCr+msZq+Fln0uwAAAAAAAAAAZh26vSCskz7Ezja6hQfTvgtaDb2Wuxw9AAAAAAAAAABtDgy+NiYeP2Ljw70ePfu+oYkevo66gT0AAAAAAAAAAKbi071c82+6Meu5uZO3z7TODjg63e/ZOAAAgD8AAAAAE9dOPoiL+rxzHQG7QKWUOY+cXb5yxi86AACAPwAAgD8AxiU8FC7yN7UzHrh3cwcx+3/Ou6ZdQDcAAIA/AACAPxOmJT51gBM+cI4mvjRvmr6qS7i8JksLvQAAAAAAAAAAvbGOPp7+Zz8WNpE+VTUEv43GuT55SMs8AAAAAAAAAABzbhy+Q9Y8vPqVKLx/Waa6SeOfPesWiTsAAIA/AACAP5ovIT7sAfU+GqlZvRq5574YQMI9VCeKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4PTLfUF0SMAWyUS8yMAXSUR0CWQ4T/hl19dX2UKGgGR0ByWpB2OhkBaAdL9WgIR0CWQ+fyPMjedX2UKGgGR0Bi0HWe6I3zaAdN6ANoCEdAlkPoAKfFrHV9lChoBkdAcZ2jmSyMUGgHS+doCEdAlkRzZg5R0nV9lChoBkdAb0w25QP7N2gHS8xoCEdAlkTBZMcp9nV9lChoBkdAcxgmCyyD7WgHS+toCEdAlkW7xVhkRXV9lChoBkdAc6Sr9ETg22gHS+poCEdAlkYC0F8ohXV9lChoBkdAcy+RnOB192gHS/VoCEdAlkYYaP0ZnHV9lChoBkdAcHRVlwtJ4GgHS+xoCEdAlkfLCBPKuHV9lChoBkdAX4RMxoIv8WgHTegDaAhHQJZJHF1jiGZ1fZQoaAZHQHH7+Hi3ocJoB0vZaAhHQJZJgl3Qla91fZQoaAZHQHFczIBBAwBoB00CAWgIR0CWSbHWjGkvdX2UKGgGR0BxPP3Zf2K3aAdLwGgIR0CWSbe1KGtZdX2UKGgGR0BzR61+iJwbaAdL3mgIR0CWSdShJyyVdX2UKGgGR0BzbcrvsqrjaAdL5GgIR0CWSeVtGd7OdX2UKGgGR0Bwag8NhE0BaAdL2WgIR0CWShmdRR/FdX2UKGgGR0BvGiuB+WnkaAdLvmgIR0CWSiIo3JgcdX2UKGgGR0Bwzm0Xxe9jaAdL32gIR0CWSoIRywOfdX2UKGgGR0BxlDyrgflqaAdLs2gIR0CWSvy5Zr57dX2UKGgGR0BwnShSLqD9aAdLv2gIR0CWS7Q3xWkrdX2UKGgGR0BxJ/ww0wajaAdL9mgIR0CWS/3pfQa8dX2UKGgGR0BwgPd0q6OHaAdL0WgIR0CWTD42S+xodX2UKGgGR0BtuhCOWBz4aAdLxGgIR0CWUCb3oLXudX2UKGgGR0BxCUX2ugYhaAdLwWgIR0CWUKQsPJ7tdX2UKGgGR0BykzYsd1dPaAdNCAFoCEdAllDjhLoOhHV9lChoBkdAcaKUMoc7yWgHS71oCEdAllDkIPbwjXV9lChoBkdAb7CiY9gWrWgHS89oCEdAllD694/u9nV9lChoBkdAcNsGTcIqsmgHS7NoCEdAllEiOinHenV9lChoBkdAcsbXbM5fdGgHS+hoCEdAllE2NzbN8nV9lChoBkdAcRxP6sQumWgHS9VoCEdAllFABgeA/nV9lChoBkdAcIeoFV1fV2gHS9doCEdAllFyU9pyqHV9lChoBkdAcjkF6Rhc7mgHS/ZoCEdAllLcLa24NXV9lChoBkdAczDkTHsC1mgHS8toCEdAllPYEW69TXV9lChoBkdAclUE7W/ag2gHTQoBaAhHQJZW/xCpm291fZQoaAZHQHFiPLs8gZFoB00tAWgIR0CWV+wco6S1dX2UKGgGR0BxIbRZ2ZAqaAdLqGgIR0CWWCiyprDZdX2UKGgGR0BwMxFiKBNFaAdLwGgIR0CWWOtWuHN5dX2UKGgGR0BvzVMj/uLKaAdLx2gIR0CWWQQvYe1bdX2UKGgGR0BxYjLyMDOkaAdLyWgIR0CWWVOcUdq+dX2UKGgGR0BfycKTjebeaAdN6ANoCEdAllmAU+LWJHV9lChoBkdAbNb2i+L3sWgHS9BoCEdAllndSMtK7XV9lChoBkdAbEUO2iL2pWgHS9NoCEdAllodc4YJmnV9lChoBkdAbhLAYYR/VmgHS9VoCEdAllp0z9CNTHV9lChoBkdAcogaBI4EOmgHS/NoCEdAllp16eGwinV9lChoBkdAcT05XEIgNmgHS+doCEdAllqnuuzQeHV9lChoBkdAcEQtXPqs2mgHS8hoCEdAlluDE74i5nV9lChoBkdAYaEEbo8p1GgHTegDaAhHQJZdFKkEcKh1fZQoaAZHQHMG2fK6nR9oB0v3aAhHQJZeYaJhvzh1fZQoaAZHQG5xCjcmBvtoB0vAaAhHQJZe/wiJO351fZQoaAZHQHEJ4vSMLndoB0u7aAhHQJZgiLpA2Q51fZQoaAZHQHExC8FpwjtoB0vQaAhHQJZgvfaYeDF1fZQoaAZHQHIq5uAI6bRoB0uwaAhHQJZg/ReC04R1fZQoaAZHQHCpiOq//NtoB0vgaAhHQJZhM5DJEIB1fZQoaAZHQHEB4Zl4C6poB0vOaAhHQJZhajnFHax1fZQoaAZHQHCbzKkl/pdoB0veaAhHQJZiWmO2iL51fZQoaAZHQHHpgBLf1pVoB0vPaAhHQJZifWEsasJ1fZQoaAZHQHKeNHDrJKdoB0vraAhHQJZi0r4Fia11fZQoaAZHQHCDsSTQmeFoB0u7aAhHQJZi56JIlMR1fZQoaAZHQG+ISn1nM+xoB0vfaAhHQJZjFkOI68x1fZQoaAZHQHEklFc6eXloB0vvaAhHQJZjkPFvQ4V1fZQoaAZHQHItlmWdEstoB0v0aAhHQJZjj5sTFl11fZQoaAZHQHNAg+pwS8JoB0vsaAhHQJZlCcG1QZZ1fZQoaAZHQHBBCF0xM39oB0vyaAhHQJZmk6NlyzZ1fZQoaAZHQHDYBdld1MdoB0vMaAhHQJZm2jsUqQR1fZQoaAZHQG+n0zj3mFJoB0vTaAhHQJZm4GHHmzV1fZQoaAZHQHOaEgfU4JhoB0vNaAhHQJZnBwsGxD91fZQoaAZHQHHA+VPepGZoB0vlaAhHQJZnRBJI1+B1fZQoaAZHQHGZ3OW0JF9oB0vVaAhHQJZnZT1kDp11fZQoaAZHQHArBp5/smhoB0u8aAhHQJZn4V+I/JN1fZQoaAZHQHBnV/+bVjJoB0vTaAhHQJZn+GnGbTd1fZQoaAZHQHD/6JZW7vpoB0vWaAhHQJZoKjvd/KB1fZQoaAZHQG8LyHmA9V5oB0vBaAhHQJZo2nuRcNZ1fZQoaAZHQG680x20Re1oB0vbaAhHQJZo/U5MlC11fZQoaAZHQHGgHUMG5c1oB0vZaAhHQJZpfreIl+p1fZQoaAZHQHNpceCCjDdoB00NAWgIR0CWahGlANXpdX2UKGgGR0BxC0sWfseGaAdL2GgIR0CWayUt7KJVdX2UKGgGR0BzaxFpfx+baAdL1mgIR0CWbQ1M/QjVdX2UKGgGR0BvZ5+BpYcOaAdL02gIR0CWbSWvKU3XdX2UKGgGR0BvPa6e5Fw2aAdLuWgIR0CWbWfWtlqbdX2UKGgGR0Bx2PJeVs1saAdL4mgIR0CWbg10T101dX2UKGgGR0Bvugksz2vjaAdLymgIR0CWbiuq3mV8dX2UKGgGR0ByYMhEBsAOaAdNBAFoCEdAlm4+dwvQGHV9lChoBkdAcgiKF7D2rWgHS/poCEdAlm48eOn2qXV9lChoBkdAZOLQ6ZH/cWgHTegDaAhHQJZuRas6q811fZQoaAZHQHLllUlzEJloB0vwaAhHQJZuV+7UXpJ1fZQoaAZHQHIo97BwdbRoB0vqaAhHQJZuwibDuSh1fZQoaAZHQHDwfJ7sv7FoB0vHaAhHQJZu2MIeHSF1fZQoaAZHQG94EETxoZhoB0vEaAhHQJZvP9Hc1wZ1fZQoaAZHQHJrbBoEjgRoB0vqaAhHQJZvmC7K7qZ1fZQoaAZHQHIpWjKxLTRoB0vQaAhHQJZwEuBczIp1fZQoaAZHQHIZs3l0YCRoB0vsaAhHQJZx3OzIFNd1fZQoaAZHQHKPKkM1CPZoB0vUaAhHQJZy/8ZUDMh1fZQoaAZHQG+kiPhhpg1oB0u5aAhHQJZzSB8QZoB1fZQoaAZHQHJFzbBXS0BoB0vYaAhHQJZzcVRDTjN1fZQoaAZHQHBV8MAmzB1oB0vXaAhHQJZ0Ak1Mue11fZQoaAZHQHHWYqG1x85oB0u5aAhHQJZ0AL5RCQd1fZQoaAZHQHDjq5sj3VVoB0vVaAhHQJZ0I6BAfMh1fZQoaAZHQHKuajN6gNBoB0v+aAhHQJZ0Ubo8p1B1fZQoaAZHQHJF2/etSydoB0vlaAhHQJZ0lKDkELZ1fZQoaAZHQG6YUsWfseJoB0vRaAhHQJZ0lMURFql1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (176 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.1144651, "std_reward": 14.631091205567042, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-06T16:18:13.936139"}
|