ppo-LunarLander-v2 / config.json
AliSab's picture
ppo model for ppo-LunarLander-v2 for the Unit 1 of Huggingface Deep RL
aaa0290
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc66c423820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc66c4238b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc66c423940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc66c4239d0>", "_build": "<function ActorCriticPolicy._build at 0x7fc66c423a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fc66c423af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc66c423b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc66c423c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc66c423ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc66c423d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc66c423dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc66c41e6c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 212992, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672622457211411126, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0cXb6iBIc/Zr8Uvz1wIr9l0pC+bl+avgAAAAAAAAAAmk0kvK6xlbp2RCC0zZTWLjFqpboL+aozAACAPwAAgD8aryM+qFqEvPaYlj3/Plw8N4H8vba3wLwAAIA/AACAP7PiAb2Pvj+6niLyvUWXuLsE/vc7k5+IPAAAgD8AAIA/zbRHvZwwBbwCdre65lYjPQU4Hb0n7yo4AACAPwAAgD/meTc9azDuPvmXKj0ineu+oj1bPepllTwAAAAAAAAAADOTwjvsOdS56/h/vQVAmrHmVZI7y1+nswAAgD8AAIA/M0PfOukdG7wtmrA9+1xhPDs1eb32lj09AACAPwAAgD9Ne5U9AR4fPnm0nb7kitG+YxUavnMeZ70AAAAAAAAAADqjOT4qNSc/ZBYfPuQ4F7/7L5A+Lw6evAAAAAAAAAAAM/mvvWOTjD+ufBC+FuIPv6Cla74mCkO9AAAAAAAAAAAz6SS9rsmPuvPSz71N42E1JBJhunCJzrQAAIA/AACAP1tdg779/CM/heT9PX77777V2aK+3bw/PgAAAAAAAAAAWrAevlqdhD7+UpI+6nEIvx56ybezhtk9AAAAAAAAAAAzX+O8e0muvNUB6b00KpI7r4wNPtaUWT4AAIA/AACAPzPXlzyPakK6nKqgusZm+rcRuPu62Js8OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMjuL3qmScUCUhpRSlIwBbJRL1YwBdJRHQKd1aujASFp1fZQoaAZoCWgPQwh24JwRZZdxQJSGlFKUaBVNAgFoFkdAp3WVrM1TBXV9lChoBmgJaA9DCE5fz9esqXNAlIaUUpRoFUvLaBZHQKd1tbILgGd1fZQoaAZoCWgPQwhOK4VALt5wQJSGlFKUaBVLn2gWR0CndboyTINmdX2UKGgGaAloD0MIKhxBKsUjckCUhpRSlGgVS8xoFkdAp3YRBgNPQHV9lChoBmgJaA9DCOfj2lCxUHNAlIaUUpRoFUvxaBZHQKd2HL3bmEJ1fZQoaAZoCWgPQwjzx7Q2jR5yQJSGlFKUaBVLq2gWR0CndjWxhUiqdX2UKGgGaAloD0MI8rImFvh/c0CUhpRSlGgVS89oFkdAp3Y8Pxx1gnV9lChoBmgJaA9DCAVsByO2CXFAlIaUUpRoFUu7aBZHQKd2Sa8YhuB1fZQoaAZoCWgPQwhiFW9kniVyQJSGlFKUaBVL22gWR0Cndme5vtMPdX2UKGgGaAloD0MIsTVbeQkoc0CUhpRSlGgVS+loFkdAp3aWF6AvtnV9lChoBmgJaA9DCN4+q8zUGnNAlIaUUpRoFUvjaBZHQKd2l7KJVKh1fZQoaAZoCWgPQwiIS4475ThyQJSGlFKUaBVL3GgWR0Cndwq5kK/mdX2UKGgGaAloD0MIaD9SRIb0b0CUhpRSlGgVS7xoFkdAp3dDFl05l3V9lChoBmgJaA9DCPa1LjXCDHNAlIaUUpRoFUvYaBZHQKd3gp6QeV91fZQoaAZoCWgPQwiXj6Skh7lxQJSGlFKUaBVLumgWR0Cnd5Nnwob5dX2UKGgGaAloD0MIniPyXUoTckCUhpRSlGgVS+5oFkdAp3egZ0jkdXV9lChoBmgJaA9DCGPvxRetqXFAlIaUUpRoFUvCaBZHQKd3rzMibDx1fZQoaAZoCWgPQwh/2T152BRyQJSGlFKUaBVLrmgWR0Cnd9OO0b97dX2UKGgGaAloD0MIaaz9nS3Fc0CUhpRSlGgVS+FoFkdAp3fZiNKh+XV9lChoBmgJaA9DCDqRYKoZdm5AlIaUUpRoFUu6aBZHQKd3/G7SRbN1fZQoaAZoCWgPQwhORwA3i7ZwQJSGlFKUaBVLpGgWR0CneBB7VrhzdX2UKGgGaAloD0MI0bLuHwv5cECUhpRSlGgVS8xoFkdAp3hGRRuTA3V9lChoBmgJaA9DCKuy74qg/nBAlIaUUpRoFUunaBZHQKd4TRzijtZ1fZQoaAZoCWgPQwhlyLH1DJBzQJSGlFKUaBVL3mgWR0CneH5TQ3PzdX2UKGgGaAloD0MI6Z51jRYFc0CUhpRSlGgVS+JoFkdAp3ia0QbuMXV9lChoBmgJaA9DCCdNg6K5a3FAlIaUUpRoFUvGaBZHQKd4qF7laKV1fZQoaAZoCWgPQwgP0egOIt5yQJSGlFKUaBVL1WgWR0CngxW87IT5dX2UKGgGaAloD0MIL6UuGQcSc0CUhpRSlGgVS9BoFkdAp4NIxN7BwnV9lChoBmgJaA9DCIJV9fJ7yHJAlIaUUpRoFUu/aBZHQKeDihJRO1x1fZQoaAZoCWgPQwg+XHLcKbpwQJSGlFKUaBVL2GgWR0Cng6bW3BpIdX2UKGgGaAloD0MI+z+H+fLfcECUhpRSlGgVS6RoFkdAp4OpdyDIzXV9lChoBmgJaA9DCFPNrKXAxXFAlIaUUpRoFUvCaBZHQKeDvLr5ZbJ1fZQoaAZoCWgPQwiFWz6SUrdxQJSGlFKUaBVL62gWR0Cng++zUqhEdX2UKGgGaAloD0MIbef7qXGMc0CUhpRSlGgVS9toFkdAp4QNENOM2nV9lChoBmgJaA9DCO5brRMXEnNAlIaUUpRoFUv5aBZHQKeEJposZpB1fZQoaAZoCWgPQwj3rkFf+h1zQJSGlFKUaBVL4WgWR0CnhEWzv7WNdX2UKGgGaAloD0MIq10T0lq5c0CUhpRSlGgVS9NoFkdAp4RuAf+0gXV9lChoBmgJaA9DCCydD88SAHFAlIaUUpRoFUvcaBZHQKeEj/kNnXd1fZQoaAZoCWgPQwiM8zeh0LRxQJSGlFKUaBVLzmgWR0CnhMTyJ9ApdX2UKGgGaAloD0MIXKyowbRFc0CUhpRSlGgVS95oFkdAp4TlbJOnEXV9lChoBmgJaA9DCFBu2/coBHJAlIaUUpRoFUvtaBZHQKeE9CrtE5R1fZQoaAZoCWgPQwgSiULLumhxQJSGlFKUaBVLx2gWR0CnhV8BU70WdX2UKGgGaAloD0MIlkG1wQn9c0CUhpRSlGgVS89oFkdAp4XwTRIBinV9lChoBmgJaA9DCBB4YAChK3FAlIaUUpRoFUv1aBZHQKeGKFaB7NV1fZQoaAZoCWgPQwi2EyUhETxxQJSGlFKUaBVL1WgWR0Cnhidz4k/sdX2UKGgGaAloD0MIVz1gHvI0ckCUhpRSlGgVS9ZoFkdAp4ZAfMfRu3V9lChoBmgJaA9DCMiUD0HV53FAlIaUUpRoFUvkaBZHQKeGWAbyYol1fZQoaAZoCWgPQwhW16GaEgxwQJSGlFKUaBVLwmgWR0Cnhlnr6ciGdX2UKGgGaAloD0MIh8Woa+1HcUCUhpRSlGgVS9toFkdAp4aLKcNH6XV9lChoBmgJaA9DCOiFOxeGAHBAlIaUUpRoFUvKaBZHQKeGsFCb+cZ1fZQoaAZoCWgPQwjNBplk5HdyQJSGlFKUaBVL2GgWR0CnhrpPAO8TdX2UKGgGaAloD0MIcXSV7i7+cECUhpRSlGgVS75oFkdAp4cIKQaJh3V9lChoBmgJaA9DCJvmHadoMnJAlIaUUpRoFUvjaBZHQKeHHyauwHJ1fZQoaAZoCWgPQwiZDMfzmfxuQJSGlFKUaBVLz2gWR0Cnh2/thNM5dX2UKGgGaAloD0MIDD7NycsTdECUhpRSlGgVS/1oFkdAp4eSuIRAbHV9lChoBmgJaA9DCC5VaYvrkHFAlIaUUpRoFUv1aBZHQKeH1fl6qsF1fZQoaAZoCWgPQwih8xq7hAlxQJSGlFKUaBVL0GgWR0Cnh+zoEB8ydX2UKGgGaAloD0MIjXxe8dQCcUCUhpRSlGgVS7poFkdAp4g0sBhhIHV9lChoBmgJaA9DCIW2nEtxbnBAlIaUUpRoFUvEaBZHQKeIiaJhvzh1fZQoaAZoCWgPQwjr5AzF3VxxQJSGlFKUaBVLw2gWR0CniLI73fygdX2UKGgGaAloD0MID5ccd0pVckCUhpRSlGgVS9NoFkdAp4i35P/JeXV9lChoBmgJaA9DCNb8+EuL5HJAlIaUUpRoFUvTaBZHQKeI0zO5avB1fZQoaAZoCWgPQwhd+peksiVyQJSGlFKUaBVLzWgWR0CniNbtiQT3dX2UKGgGaAloD0MIVcGopM7ScUCUhpRSlGgVS7loFkdAp4j1p/PPcHV9lChoBmgJaA9DCJ/Ik6Rr/W9AlIaUUpRoFUvNaBZHQKeJJyFwkxB1fZQoaAZoCWgPQwikVMITekhwQJSGlFKUaBVLvWgWR0CniVGaQV9GdX2UKGgGaAloD0MIt0PDYhQ+dECUhpRSlGgVS/1oFkdAp4mUNpdrwnV9lChoBmgJaA9DCDPABdmyhkxAlIaUUpRoFU3oA2gWR0CnicuvdM0xdX2UKGgGaAloD0MImIi3zj+IcUCUhpRSlGgVS+VoFkdAp4ngVEd/8XV9lChoBmgJaA9DCNb9YyF6ZXNAlIaUUpRoFUvJaBZHQKeJ9xS5y2h1fZQoaAZoCWgPQwguHAjJwvdxQJSGlFKUaBVL9mgWR0CniktrKvFFdX2UKGgGaAloD0MIon2s4DfXcUCUhpRSlGgVS+RoFkdAp4pxoAXEZXV9lChoBmgJaA9DCAovwalPh3FAlIaUUpRoFUvSaBZHQKeKmFmFrVR1fZQoaAZoCWgPQwjwaU5eJCpwQJSGlFKUaBVLqGgWR0Cniqq3d9DydX2UKGgGaAloD0MIKv2Es1urc0CUhpRSlGgVTQQBaBZHQKeK4Yzi0fJ1fZQoaAZoCWgPQwg5JSAm4elyQJSGlFKUaBVLzWgWR0CnivnQY1pCdX2UKGgGaAloD0MI3zR9dkDCcUCUhpRSlGgVS99oFkdAp4sC88La3HV9lChoBmgJaA9DCO8dNSbE3XBAlIaUUpRoFUvEaBZHQKeLE2lVLjB1fZQoaAZoCWgPQwjwpfCgWSByQJSGlFKUaBVL5WgWR0CnizC9AX2vdX2UKGgGaAloD0MIKA6g37c8cECUhpRSlGgVS8poFkdAp4tLH0btJHV9lChoBmgJaA9DCHcujPSiyHNAlIaUUpRoFUvwaBZHQKeLZftx+8Z1fZQoaAZoCWgPQwiwWS4bHVNzQJSGlFKUaBVL7mgWR0CnjA+TV2A5dX2UKGgGaAloD0MIxsGlY855b0CUhpRSlGgVS89oFkdAp4wfRmbsnnV9lChoBmgJaA9DCNlbyvmiEHFAlIaUUpRoFUuxaBZHQKeMK/r0J4V1fZQoaAZoCWgPQwhcOuY84/VyQJSGlFKUaBVL+WgWR0CnjGsKsuFpdX2UKGgGaAloD0MIKlQ3F38ScUCUhpRSlGgVS8toFkdAp4yz2g398HV9lChoBmgJaA9DCPN0rihllnFAlIaUUpRoFUutaBZHQKeM0wHqu8t1fZQoaAZoCWgPQwhUrBqEuZJvQJSGlFKUaBVNHAFoFkdAp4z84YJmd3V9lChoBmgJaA9DCMBBe/VxinJAlIaUUpRoFUvgaBZHQKeNHP/JeVt1fZQoaAZoCWgPQwhNoIhFDFxvQJSGlFKUaBVLuWgWR0CnjTR+BpYcdX2UKGgGaAloD0MIEW3H1J1sckCUhpRSlGgVS6VoFkdAp408Eq2BrnV9lChoBmgJaA9DCOIEptO6GnNAlIaUUpRoFUvOaBZHQKeNXFAE+xJ1fZQoaAZoCWgPQwgMkj6toglzQJSGlFKUaBVNdQFoFkdAp412yNXHR3V9lChoBmgJaA9DCEPFOH8TanRAlIaUUpRoFUv6aBZHQKeNfNeMQ3B1fZQoaAZoCWgPQwi1jT9RGSFzQJSGlFKUaBVL6mgWR0Cnjd8TJyQxdX2UKGgGaAloD0MI3/jaMwtMckCUhpRSlGgVS+JoFkdAp44CMPz4DnV9lChoBmgJaA9DCPWAecgUO3JAlIaUUpRoFU0jAWgWR0CnjjscyWRjdX2UKGgGaAloD0MIs3kcBjPOcUCUhpRSlGgVS71oFkdAp45CoAGSp3V9lChoBmgJaA9DCBN+qZ/3YXJAlIaUUpRoFUvHaBZHQKeOaDA8B+51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 600, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}