Upload PPO BipedalWalker-v3 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-BipedalWalker-v3.zip +3 -0
- ppo-BipedalWalker-v3/_stable_baselines3_version +1 -0
- ppo-BipedalWalker-v3/data +99 -0
- ppo-BipedalWalker-v3/policy.optimizer.pth +3 -0
- ppo-BipedalWalker-v3/policy.pth +3 -0
- ppo-BipedalWalker-v3/pytorch_variables.pth +3 -0
- ppo-BipedalWalker-v3/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalker-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 126.62 +/- 7.52
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: BipedalWalker-v3
|
20 |
+
type: BipedalWalker-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **BipedalWalker-v3**
|
24 |
+
This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9914fefa70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9914fefb00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9914fefb90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9914fefc20>", "_build": "<function ActorCriticPolicy._build at 0x7f9914fefcb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9914fefd40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9914fefdd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9914fefe60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9914fefef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9914feff80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9914f75050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9914fc4690>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVYwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsYhZRoColDYAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLGIWUaAqJQ2AAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSxiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsYhZRoKolDGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVmwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsEhZRoColDEAAAgL8AAIC/AACAvwAAgL+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSwSFlGgKiUMQAACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLBIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwQBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsEhZRoKolDBAEBAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 704512, "_total_timesteps": 700000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1654096855.335469, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLGIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIABgAAuplJP1Eq/7tLlwQ+1p6lvZWsVb8AAECydHiSvsVPAL4AAIA/Ez+RPwAAAAAGkX4/AQCAPwAAAAAaJJ4+3O+fPs2IpT4BoK8+r5u/Pqsh2D7SZ/4+u+keP9GIWj8AAIA/1q1vvsyahb2821s+COd0PZG3EL+aepo+TlFoPwEAgD8AAAAAoESRPwAAAADBjlQ/nDpiPwAAgD9xWao+ttKsPiHmsj6mO78+nz3SPrQZ7z7LuBA/ZEQ5PwAAgD8AAIA/p3DUPrXcl718c40+bhQKu4lvUL8AQBo4gIofvhDFyD4AAIA/YSaPPyp9BL/8lUg/yP9/PwAAAABsGYo+uQKNPnHlkj46Mps+eEmoPo4FvD4xJ9g+v8kDPwkwMT8AAIA/aJ+lPpwR5Lw5gac9tBR6PAXcUb8AoN63OKZkPtxsSD4AAIA/dGGJP4TdIL6q7Uw/AgCAPwAAAABW2pY+amqWPm8cmT4WPJ8+ypSpPjf8tz7SUs8+Axj7PlkEKD8AAIA/9kbLPiPNLruv+1Q+RoWHvTgOQb7PsI6+kHH8vgsk6zwAAIA/PoZOPx3mtL8OM3E///9/PwAAAABI7qc+65+rPvXnsT4K770+9t3UPsjo8D4xmA4/1ps1P9xqeD8AAIA/Ds57u5fPuDrzDNk9H5KWPZThG7+pFTM/N5IMPwAAgL8AAIA/9eSTP43YSz8E3DA/AQCAvwAAgD89DJg+SMaZPjcrnj69MqY+jtOyPq1kxz6k6Oo+ldMWP/fRYD8AAIA/YBmWPrOVoL3oKHI+X+0jvbu8Vb8AAAAAUNg4PsB4zT4AAAAAxDqPPwAAAAB+qEc/AACAPwAAAAAeXYE+LSiBPnkohD4694s+xpmYPgsNrT5rkNA+FokJP53FRz8AAIA/TTM4PL9afbzI+8Q9suAmPswfP7/r/38/1KutPgEAgL8AAAAAbauNPwAAADOOVmg/429kvgAAgD+t3Yo+i1CMPmKVkD6qupg+/h6mPiR2uT6ehNU+RGD/PporJD8AAIA/t7sFvZx+RjurNiY8ya6xvUfrAr8MG+s+8JAKv80DB78AAAAAs0WQPwAAAADKQCa/GOPpvQAAgD8pk6k+eUqsPiBSsz4mdMA+hTbTPhT88D7Ybg8/z0wtPyQjXT8AAIA/8u/mPh2FiD3NV9U9Z24Qvr5xSr9XWVq+zgozv///f78AAAAAXKCMPwAAAADgLw09AwCAPwAAAAAuc5s+HTedPrEAoj5r56k+5F64PnmY0D6eDvg++bUeP+QOWD8AAIA/LRSdPuYRRj3nYAQ+nJ6TPST4Ir/07D+/oCpCPfH2Dj8AAIA/q4JvP2gUOL9I0iY///9/PwAAgD/oeZI+lyyQPh0nkT4LBpc+4oahPhNXtT5kKNU+qXAGPy3lPj8AAIA/dvRlPBjJBr4Yb5o+fSbsPLrnVb8AMDe5kT4QP+O5fj8AAIA/nfGCP9SZXD+lG1E/PQCAvwAAAABdyI8+YWqRPvS3lj4Gp6A+4yWyPvvzzj6Kuvs+YhUeP+N/WD8AAIA/mh6cvTSeNbtx3c896jolPvh3U78kugE+WEQuP2mki74AAIA/mUSRPwAAAADIOmY/AwmyvgAAgD/Q6pA+k7KSPhmdmD5OqqI+jvSxPmT2xj5HGOU+NG4HP8clLz8AAIA/YRGCPTjLsj0brmA+5B+yvc+hRj7QJa09+Db6vvv/f78AAAAAJouAP5Fl4r7Q3ja+AQCAvwAAAACqR7g+79a7PmWNwz6kS88+zD/fPleo+j5X3RI/wh4wP5w/Wj8AAIA/or2bvr/nGDzuoDg+H6fvPUogAb9skEa9LxVvPwAAAAAAAAAAp0SRPwAAAAC6NWo/pArOvgAAgD/21bI+4t20Plgyuz6Xm8Y+uK7YPkNq9D5Q2Q8/dLUzP5SFez8AAIA//C02vsDCOLyEcz8+H06YPXFFQb8YzBI/K/EYP7j/f78AAAAAMTOQPwAA0DPDXgs/2+krvgAAgD9fyqs+0L2tPlM9tz4zmMY+SuzcPqER/j6CpxM//AEwPwPxXz8AAIA/lHSUYi4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.006445714285714388, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWeAruvUONkCUhpRSlIwBbJRNQAaMAXSUR0CDOxOIInjRdX2UKGgGaAloD0MIzO7Jw0JdF0CUhpRSlGgVTUAGaBZHQINA0LfDUEx1fZQoaAZoCWgPQwjJrUm3JQ9VwJSGlFKUaBVNgAFoFkdAg2gLG7z06HV9lChoBmgJaA9DCKUvhJz3hl3AlIaUUpRoFUs6aBZHQINpMlzEJjV1fZQoaAZoCWgPQwi1F9F2TC0dQJSGlFKUaBVNQAZoFkdAg20UUwi7kHV9lChoBmgJaA9DCGfw94vZ4jpAlIaUUpRoFU1ABmgWR0CDd57EYO2BdX2UKGgGaAloD0MIg8E1d/TvMECUhpRSlGgVTUAGaBZHQIN+xaePJaJ1fZQoaAZoCWgPQwhJEK6AQlZbwJSGlFKUaBVLMmgWR0CDgYbutwJgdX2UKGgGaAloD0MIYJFfP8TyQUCUhpRSlGgVTUAGaBZHQIOD+NT987Z1fZQoaAZoCWgPQwi78e7IWME7QJSGlFKUaBVNQAZoFkdAg4RbJW/8EXV9lChoBmgJaA9DCKiLFMrCr13AlIaUUpRoFUtTaBZHQIOIsK1G9Yh1fZQoaAZoCWgPQwgPuoRDb3EzQJSGlFKUaBVNQAZoFkdAg4nUW/JvHnV9lChoBmgJaA9DCMHicOZXs0BAlIaUUpRoFU1ABmgWR0CDjwZzgdfcdX2UKGgGaAloD0MI0vvG157pMECUhpRSlGgVTUAGaBZHQIOPdFjNILB1fZQoaAZoCWgPQwjpnQq453EqQJSGlFKUaBVNQAZoFkdAg5dQEpy6tnV9lChoBmgJaA9DCIQu4dBbPC9AlIaUUpRoFU1ABmgWR0CDyIpSaVlgdX2UKGgGaAloD0MIkXu6umMdNECUhpRSlGgVTUAGaBZHQIPQRoTPBzp1fZQoaAZoCWgPQwjgSKDBpvY2QJSGlFKUaBVNQAZoFkdAg9VnKwIMSnV9lChoBmgJaA9DCKG+ZU6X6UVAlIaUUpRoFU1ABmgWR0CD14Gt6ol2dX2UKGgGaAloD0MIpz6QvHPYRUCUhpRSlGgVTUAGaBZHQIPbZzPrv9d1fZQoaAZoCWgPQwj8pxso8MFbwJSGlFKUaBVLVmgWR0CD3/tb9qDcdX2UKGgGaAloD0MIjzUjg9yFIkCUhpRSlGgVTUAGaBZHQIPi9bA1vVF1fZQoaAZoCWgPQwgvMgG/RuRJwJSGlFKUaBVNQAZoFkdAg+QeOn2qUHV9lChoBmgJaA9DCIoBEk2gMDtAlIaUUpRoFU1ABmgWR0CD591nuiN9dX2UKGgGaAloD0MIXHLcKR3IWsCUhpRSlGgVS5RoFkdAg+/If0VafXV9lChoBmgJaA9DCOxRuB6FRzRAlIaUUpRoFU1ABmgWR0CD8ndLxqfwdX2UKGgGaAloD0MIbToCuFlJXsCUhpRSlGgVS2ZoFkdAg/UP2PDHfnV9lChoBmgJaA9DCK2E7pI4flfAlIaUUpRoFU3gBWgWR0CD+Vbu+h4/dX2UKGgGaAloD0MICqGDLuEQKkCUhpRSlGgVTUAGaBZHQIQh1fZ26kJ1fZQoaAZoCWgPQwiTp6ym6zU0QJSGlFKUaBVNQAZoFkdAhCjPMr3CbnV9lChoBmgJaA9DCDTbFfpgQ0RAlIaUUpRoFU1ABmgWR0CEKgPatcOcdX2UKGgGaAloD0MInaG4402ONECUhpRSlGgVTUAGaBZHQIQvS0UoKD11fZQoaAZoCWgPQwgiiPNwArVGQJSGlFKUaBVNQAZoFkdAhC+42sJY1nV9lChoBmgJaA9DCFDfMqfLUEFAlIaUUpRoFU1ABmgWR0CEN688La24dX2UKGgGaAloD0MIjdXm/1XjQECUhpRSlGgVTUAGaBZHQIRDP5k9U0h1fZQoaAZoCWgPQwgwD5nyIQRCQJSGlFKUaBVNQAZoFkdAhErmALApKHV9lChoBmgJaA9DCO5fWWlS+jpAlIaUUpRoFU1ABmgWR0CET/2qT8pDdX2UKGgGaAloD0MIv0hoy7mmQECUhpRSlGgVTUAGaBZHQIRSDkMkQf91fZQoaAZoCWgPQwhMw/ARMdE+QJSGlFKUaBVNQAZoFkdAhH+3u3MINXV9lChoBmgJaA9DCFWFBmLZDENAlIaUUpRoFU1ABmgWR0CEgsIX0oSddX2UKGgGaAloD0MI3h0Zq81/PUCUhpRSlGgVTUAGaBZHQISD3wNLDht1fZQoaAZoCWgPQwjWxtgJL01WwJSGlFKUaBVNFAJoFkdAhIxeXRgJC3V9lChoBmgJaA9DCAlP6PUngUlAlIaUUpRoFU1ABmgWR0CEki7wrlNldX2UKGgGaAloD0MIcJhokIKfQECUhpRSlGgVTUAGaBZHQISU8nLJSzh1fZQoaAZoCWgPQwiGVFG8yvI9QJSGlFKUaBVNQAZoFkdAhJlKj8DSxHV9lChoBmgJaA9DCJ+qQgOxAEdAlIaUUpRoFU1ABmgWR0CEnBGaQV9GdX2UKGgGaAloD0MITOFBs+uGMUCUhpRSlGgVTUAGaBZHQISjEzEaVD91fZQoaAZoCWgPQwgwSPq0it5DQJSGlFKUaBVNQAZoFkdAhKQ7HAAQx3V9lChoBmgJaA9DCPZcpibBB0RAlIaUUpRoFU1ABmgWR0CEqXXVbzK+dX2UKGgGaAloD0MILXdmguEWR0CUhpRSlGgVTUAGaBZHQISp2fqX4TN1fZQoaAZoCWgPQwhz2H3H8LBIQJSGlFKUaBVNQAZoFkdAhNcgkTpPh3V9lChoBmgJaA9DCLlwICQLtVTAlIaUUpRoFU1iAmgWR0CE4Y8mrsBydX2UKGgGaAloD0MI3lflQuX9RECUhpRSlGgVTUAGaBZHQITirv5P/Jh1fZQoaAZoCWgPQwjlDpvIzCVEQJSGlFKUaBVNQAZoFkdAhO9Dcdo373V9lChoBmgJaA9DCOpae5+qvEpAlIaUUpRoFU1ABmgWR0CE8VaaCtihdX2UKGgGaAloD0MISKgZUkVVUcCUhpRSlGgVTRYEaBZHQIT1pvo/zJ91fZQoaAZoCWgPQwieKAmJtDFKQJSGlFKUaBVNQAZoFkdAhPmnNgSey3V9lChoBmgJaA9DCIbnpWJj3kpAlIaUUpRoFU1ABmgWR0CE/Lbuc+aCdX2UKGgGaAloD0MIfA4sR8h4RECUhpRSlGgVTUAGaBZHQIT94QSSNfh1fZQoaAZoCWgPQwiGH5xPHXFYwJSGlFKUaBVLXGgWR0CFAY+yquKXdX2UKGgGaAloD0MIfV7x1CMeW8CUhpRSlGgVS0poFkdAhQV371qWT3V9lChoBmgJaA9DCBB0tKolI1XAlIaUUpRoFU2vAWgWR0CFBifPomojdX2UKGgGaAloD0MIYOl8eJYyTkCUhpRSlGgVTUAGaBZHQIUGaTW5H3F1fZQoaAZoCWgPQwgSaRt/ohZGQJSGlFKUaBVNQAZoFkdAhQwnmaH9FXV9lChoBmgJaA9DCHO8AtGTLkFAlIaUUpRoFU1ABmgWR0CFNEjZcs19dX2UKGgGaAloD0MITaJe8GnCWcCUhpRSlGgVSzpoFkdAhTdEXUH6dnV9lChoBmgJaA9DCKRv0jQo51BAlIaUUpRoFU1ABmgWR0CFQjgQ6IWQdX2UKGgGaAloD0MIbF7VWS1LUUCUhpRSlGgVTUAGaBZHQIVDYy0rsjV1fZQoaAZoCWgPQwgsD9JT5EpHQJSGlFKUaBVNQAZoFkdAhUiE74i5eHV9lChoBmgJaA9DCHef46PFgFFAlIaUUpRoFU1ABmgWR0CFSO1R+BpYdX2UKGgGaAloD0MIF0Z6UbtVXMCUhpRSlGgVS0loFkdAhUzEUbkwOHV9lChoBmgJaA9DCK8l5IOebUdAlIaUUpRoFU1ABmgWR0CFUNQemvW6dX2UKGgGaAloD0MIh2pKsg5rTECUhpRSlGgVTUAGaBZHQIVbZ31SOzZ1fZQoaAZoCWgPQwhc/67PnPdLQJSGlFKUaBVNQAZoFkdAhVyFnIyTIXV9lChoBmgJaA9DCAFp/wOsHUNAlIaUUpRoFU1ABmgWR0CFkEwsXizcdX2UKGgGaAloD0MINSVZh6NBSkCUhpRSlGgVTUAGaBZHQIWU2RxLkCF1fZQoaAZoCWgPQwj/7EeKyHhHQJSGlFKUaBVNQAZoFkdAhZjU5uIhyXV9lChoBmgJaA9DCN51NuSf80RAlIaUUpRoFU1ABmgWR0CFnN2USqVAdX2UKGgGaAloD0MI0JuKVBg6UECUhpRSlGgVTUAGaBZHQIWkdFlTWG11fZQoaAZoCWgPQwhgqwSLw3xRQJSGlFKUaBVNQAZoFkdAhaUR9w3o93V9lChoBmgJaA9DCCV0l8RZkUlAlIaUUpRoFU1ABmgWR0CFpVLL6k6+dX2UKGgGaAloD0MIiGh0B7HAWcCUhpRSlGgVS1loFkdAhanCgsbvPXV9lChoBmgJaA9DCKVOQBNhkUlAlIaUUpRoFU1ABmgWR0CFq0Q04zacdX2UKGgGaAloD0MIbcX+snu3XMCUhpRSlGgVS7RoFkdAha5fdIoVmHV9lChoBmgJaA9DCAdEiCtnzlrAlIaUUpRoFUsjaBZHQIWwOK2rn1Z1fZQoaAZoCWgPQwg1Cd6QRipRQJSGlFKUaBVNQAZoFkdAhbEtmthd+3V9lChoBmgJaA9DCBAiGXJsO0nAlIaUUpRoFU1ABmgWR0CFvDN7jT8YdX2UKGgGaAloD0MIuHU3T3XyR0CUhpRSlGgVTUAGaBZHQIW9XgaWHDd1fZQoaAZoCWgPQwhdGVQbnNRHQJSGlFKUaBVNQAZoFkdAhcKmjCYTkHV9lChoBmgJaA9DCMoxWdx/0lrAlIaUUpRoFUtKaBZHQIXscRBeHBV1fZQoaAZoCWgPQwgZPEz75l9QQJSGlFKUaBVNQAZoFkdAhezKe05U+HV9lChoBmgJaA9DCC7m54amzk5AlIaUUpRoFU1ABmgWR0CF8NaePJaJdX2UKGgGaAloD0MIqFFIMquPU0CUhpRSlGgVTUAGaBZHQIX7OSdOIqN1fZQoaAZoCWgPQwin6h7ZXDtQQJSGlFKUaBVNQAZoFkdAhfxp8fFJhHV9lChoBmgJaA9DCBtLWBtjcVvAlIaUUpRoFUuSaBZHQIYC+6/Zdv91fZQoaAZoCWgPQwjjFvNzQ+tKQJSGlFKUaBVNQAZoFkdAhgsKUVzp5nV9lChoBmgJaA9DCI6SV+cYpVBAlIaUUpRoFU1ABmgWR0CGD3Ilt0mudX2UKGgGaAloD0MIVcA9z5+sUUCUhpRSlGgVTUAGaBZHQIYTfLV4HHF1fZQoaAZoCWgPQwhZw0Xu6cJMQJSGlFKUaBVNQAZoFkdAhheNk4FRpHV9lChoBmgJaA9DCCaMZmX7ClTAlIaUUpRoFU2MA2gWR0CGG/4yGi5/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-BipedalWalker-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be75d02b4fafd79d96227c6f5bf6dec6fb497685557b0f11a19b1d9f7b03cd76
|
3 |
+
size 172075
|
ppo-BipedalWalker-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-BipedalWalker-v3/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9914fefa70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9914fefb00>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9914fefb90>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9914fefc20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9914fefcb0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9914fefd40>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9914fefdd0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9914fefe60>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9914fefef0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9914feff80>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9914f75050>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9914fc4690>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVYwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsYhZRoColDYAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLGIWUaAqJQ2AAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSxiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsYhZRoKolDGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
24
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVmwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsEhZRoColDEAAAgL8AAIC/AACAvwAAgL+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSwSFlGgKiUMQAACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLBIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwQBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsEhZRoKolDBAEBAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
4
|
42 |
+
],
|
43 |
+
"low": "[-1. -1. -1. -1.]",
|
44 |
+
"high": "[1. 1. 1. 1.]",
|
45 |
+
"bounded_below": "[ True True True True]",
|
46 |
+
"bounded_above": "[ True True True True]",
|
47 |
+
"_np_random": null
|
48 |
+
},
|
49 |
+
"n_envs": 16,
|
50 |
+
"num_timesteps": 704512,
|
51 |
+
"_total_timesteps": 700000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": null,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1654096855.335469,
|
56 |
+
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": null,
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gASVjQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLGIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIABgAAuplJP1Eq/7tLlwQ+1p6lvZWsVb8AAECydHiSvsVPAL4AAIA/Ez+RPwAAAAAGkX4/AQCAPwAAAAAaJJ4+3O+fPs2IpT4BoK8+r5u/Pqsh2D7SZ/4+u+keP9GIWj8AAIA/1q1vvsyahb2821s+COd0PZG3EL+aepo+TlFoPwEAgD8AAAAAoESRPwAAAADBjlQ/nDpiPwAAgD9xWao+ttKsPiHmsj6mO78+nz3SPrQZ7z7LuBA/ZEQ5PwAAgD8AAIA/p3DUPrXcl718c40+bhQKu4lvUL8AQBo4gIofvhDFyD4AAIA/YSaPPyp9BL/8lUg/yP9/PwAAAABsGYo+uQKNPnHlkj46Mps+eEmoPo4FvD4xJ9g+v8kDPwkwMT8AAIA/aJ+lPpwR5Lw5gac9tBR6PAXcUb8AoN63OKZkPtxsSD4AAIA/dGGJP4TdIL6q7Uw/AgCAPwAAAABW2pY+amqWPm8cmT4WPJ8+ypSpPjf8tz7SUs8+Axj7PlkEKD8AAIA/9kbLPiPNLruv+1Q+RoWHvTgOQb7PsI6+kHH8vgsk6zwAAIA/PoZOPx3mtL8OM3E///9/PwAAAABI7qc+65+rPvXnsT4K770+9t3UPsjo8D4xmA4/1ps1P9xqeD8AAIA/Ds57u5fPuDrzDNk9H5KWPZThG7+pFTM/N5IMPwAAgL8AAIA/9eSTP43YSz8E3DA/AQCAvwAAgD89DJg+SMaZPjcrnj69MqY+jtOyPq1kxz6k6Oo+ldMWP/fRYD8AAIA/YBmWPrOVoL3oKHI+X+0jvbu8Vb8AAAAAUNg4PsB4zT4AAAAAxDqPPwAAAAB+qEc/AACAPwAAAAAeXYE+LSiBPnkohD4694s+xpmYPgsNrT5rkNA+FokJP53FRz8AAIA/TTM4PL9afbzI+8Q9suAmPswfP7/r/38/1KutPgEAgL8AAAAAbauNPwAAADOOVmg/429kvgAAgD+t3Yo+i1CMPmKVkD6qupg+/h6mPiR2uT6ehNU+RGD/PporJD8AAIA/t7sFvZx+RjurNiY8ya6xvUfrAr8MG+s+8JAKv80DB78AAAAAs0WQPwAAAADKQCa/GOPpvQAAgD8pk6k+eUqsPiBSsz4mdMA+hTbTPhT88D7Ybg8/z0wtPyQjXT8AAIA/8u/mPh2FiD3NV9U9Z24Qvr5xSr9XWVq+zgozv///f78AAAAAXKCMPwAAAADgLw09AwCAPwAAAAAuc5s+HTedPrEAoj5r56k+5F64PnmY0D6eDvg++bUeP+QOWD8AAIA/LRSdPuYRRj3nYAQ+nJ6TPST4Ir/07D+/oCpCPfH2Dj8AAIA/q4JvP2gUOL9I0iY///9/PwAAgD/oeZI+lyyQPh0nkT4LBpc+4oahPhNXtT5kKNU+qXAGPy3lPj8AAIA/dvRlPBjJBr4Yb5o+fSbsPLrnVb8AMDe5kT4QP+O5fj8AAIA/nfGCP9SZXD+lG1E/PQCAvwAAAABdyI8+YWqRPvS3lj4Gp6A+4yWyPvvzzj6Kuvs+YhUeP+N/WD8AAIA/mh6cvTSeNbtx3c896jolPvh3U78kugE+WEQuP2mki74AAIA/mUSRPwAAAADIOmY/AwmyvgAAgD/Q6pA+k7KSPhmdmD5OqqI+jvSxPmT2xj5HGOU+NG4HP8clLz8AAIA/YRGCPTjLsj0brmA+5B+yvc+hRj7QJa09+Db6vvv/f78AAAAAJouAP5Fl4r7Q3ja+AQCAvwAAAACqR7g+79a7PmWNwz6kS88+zD/fPleo+j5X3RI/wh4wP5w/Wj8AAIA/or2bvr/nGDzuoDg+H6fvPUogAb9skEa9LxVvPwAAAAAAAAAAp0SRPwAAAAC6NWo/pArOvgAAgD/21bI+4t20Plgyuz6Xm8Y+uK7YPkNq9D5Q2Q8/dLUzP5SFez8AAIA//C02vsDCOLyEcz8+H06YPXFFQb8YzBI/K/EYP7j/f78AAAAAMTOQPwAA0DPDXgs/2+krvgAAgD9fyqs+0L2tPlM9tz4zmMY+SuzcPqER/j6CpxM//AEwPwPxXz8AAIA/lHSUYi4="
|
65 |
+
},
|
66 |
+
"_last_episode_starts": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
69 |
+
},
|
70 |
+
"_last_original_obs": null,
|
71 |
+
"_episode_num": 0,
|
72 |
+
"use_sde": false,
|
73 |
+
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": -0.006445714285714388,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gASVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWeAruvUONkCUhpRSlIwBbJRNQAaMAXSUR0CDOxOIInjRdX2UKGgGaAloD0MIzO7Jw0JdF0CUhpRSlGgVTUAGaBZHQINA0LfDUEx1fZQoaAZoCWgPQwjJrUm3JQ9VwJSGlFKUaBVNgAFoFkdAg2gLG7z06HV9lChoBmgJaA9DCKUvhJz3hl3AlIaUUpRoFUs6aBZHQINpMlzEJjV1fZQoaAZoCWgPQwi1F9F2TC0dQJSGlFKUaBVNQAZoFkdAg20UUwi7kHV9lChoBmgJaA9DCGfw94vZ4jpAlIaUUpRoFU1ABmgWR0CDd57EYO2BdX2UKGgGaAloD0MIg8E1d/TvMECUhpRSlGgVTUAGaBZHQIN+xaePJaJ1fZQoaAZoCWgPQwhJEK6AQlZbwJSGlFKUaBVLMmgWR0CDgYbutwJgdX2UKGgGaAloD0MIYJFfP8TyQUCUhpRSlGgVTUAGaBZHQIOD+NT987Z1fZQoaAZoCWgPQwi78e7IWME7QJSGlFKUaBVNQAZoFkdAg4RbJW/8EXV9lChoBmgJaA9DCKiLFMrCr13AlIaUUpRoFUtTaBZHQIOIsK1G9Yh1fZQoaAZoCWgPQwgPuoRDb3EzQJSGlFKUaBVNQAZoFkdAg4nUW/JvHnV9lChoBmgJaA9DCMHicOZXs0BAlIaUUpRoFU1ABmgWR0CDjwZzgdfcdX2UKGgGaAloD0MI0vvG157pMECUhpRSlGgVTUAGaBZHQIOPdFjNILB1fZQoaAZoCWgPQwjpnQq453EqQJSGlFKUaBVNQAZoFkdAg5dQEpy6tnV9lChoBmgJaA9DCIQu4dBbPC9AlIaUUpRoFU1ABmgWR0CDyIpSaVlgdX2UKGgGaAloD0MIkXu6umMdNECUhpRSlGgVTUAGaBZHQIPQRoTPBzp1fZQoaAZoCWgPQwjgSKDBpvY2QJSGlFKUaBVNQAZoFkdAg9VnKwIMSnV9lChoBmgJaA9DCKG+ZU6X6UVAlIaUUpRoFU1ABmgWR0CD14Gt6ol2dX2UKGgGaAloD0MIpz6QvHPYRUCUhpRSlGgVTUAGaBZHQIPbZzPrv9d1fZQoaAZoCWgPQwj8pxso8MFbwJSGlFKUaBVLVmgWR0CD3/tb9qDcdX2UKGgGaAloD0MIjzUjg9yFIkCUhpRSlGgVTUAGaBZHQIPi9bA1vVF1fZQoaAZoCWgPQwgvMgG/RuRJwJSGlFKUaBVNQAZoFkdAg+QeOn2qUHV9lChoBmgJaA9DCIoBEk2gMDtAlIaUUpRoFU1ABmgWR0CD591nuiN9dX2UKGgGaAloD0MIXHLcKR3IWsCUhpRSlGgVS5RoFkdAg+/If0VafXV9lChoBmgJaA9DCOxRuB6FRzRAlIaUUpRoFU1ABmgWR0CD8ndLxqfwdX2UKGgGaAloD0MIbToCuFlJXsCUhpRSlGgVS2ZoFkdAg/UP2PDHfnV9lChoBmgJaA9DCK2E7pI4flfAlIaUUpRoFU3gBWgWR0CD+Vbu+h4/dX2UKGgGaAloD0MICqGDLuEQKkCUhpRSlGgVTUAGaBZHQIQh1fZ26kJ1fZQoaAZoCWgPQwiTp6ym6zU0QJSGlFKUaBVNQAZoFkdAhCjPMr3CbnV9lChoBmgJaA9DCDTbFfpgQ0RAlIaUUpRoFU1ABmgWR0CEKgPatcOcdX2UKGgGaAloD0MInaG4402ONECUhpRSlGgVTUAGaBZHQIQvS0UoKD11fZQoaAZoCWgPQwgiiPNwArVGQJSGlFKUaBVNQAZoFkdAhC+42sJY1nV9lChoBmgJaA9DCFDfMqfLUEFAlIaUUpRoFU1ABmgWR0CEN688La24dX2UKGgGaAloD0MIjdXm/1XjQECUhpRSlGgVTUAGaBZHQIRDP5k9U0h1fZQoaAZoCWgPQwgwD5nyIQRCQJSGlFKUaBVNQAZoFkdAhErmALApKHV9lChoBmgJaA9DCO5fWWlS+jpAlIaUUpRoFU1ABmgWR0CET/2qT8pDdX2UKGgGaAloD0MIv0hoy7mmQECUhpRSlGgVTUAGaBZHQIRSDkMkQf91fZQoaAZoCWgPQwhMw/ARMdE+QJSGlFKUaBVNQAZoFkdAhH+3u3MINXV9lChoBmgJaA9DCFWFBmLZDENAlIaUUpRoFU1ABmgWR0CEgsIX0oSddX2UKGgGaAloD0MI3h0Zq81/PUCUhpRSlGgVTUAGaBZHQISD3wNLDht1fZQoaAZoCWgPQwjWxtgJL01WwJSGlFKUaBVNFAJoFkdAhIxeXRgJC3V9lChoBmgJaA9DCAlP6PUngUlAlIaUUpRoFU1ABmgWR0CEki7wrlNldX2UKGgGaAloD0MIcJhokIKfQECUhpRSlGgVTUAGaBZHQISU8nLJSzh1fZQoaAZoCWgPQwiGVFG8yvI9QJSGlFKUaBVNQAZoFkdAhJlKj8DSxHV9lChoBmgJaA9DCJ+qQgOxAEdAlIaUUpRoFU1ABmgWR0CEnBGaQV9GdX2UKGgGaAloD0MITOFBs+uGMUCUhpRSlGgVTUAGaBZHQISjEzEaVD91fZQoaAZoCWgPQwgwSPq0it5DQJSGlFKUaBVNQAZoFkdAhKQ7HAAQx3V9lChoBmgJaA9DCPZcpibBB0RAlIaUUpRoFU1ABmgWR0CEqXXVbzK+dX2UKGgGaAloD0MILXdmguEWR0CUhpRSlGgVTUAGaBZHQISp2fqX4TN1fZQoaAZoCWgPQwhz2H3H8LBIQJSGlFKUaBVNQAZoFkdAhNcgkTpPh3V9lChoBmgJaA9DCLlwICQLtVTAlIaUUpRoFU1iAmgWR0CE4Y8mrsBydX2UKGgGaAloD0MI3lflQuX9RECUhpRSlGgVTUAGaBZHQITirv5P/Jh1fZQoaAZoCWgPQwjlDpvIzCVEQJSGlFKUaBVNQAZoFkdAhO9Dcdo373V9lChoBmgJaA9DCOpae5+qvEpAlIaUUpRoFU1ABmgWR0CE8VaaCtihdX2UKGgGaAloD0MISKgZUkVVUcCUhpRSlGgVTRYEaBZHQIT1pvo/zJ91fZQoaAZoCWgPQwieKAmJtDFKQJSGlFKUaBVNQAZoFkdAhPmnNgSey3V9lChoBmgJaA9DCIbnpWJj3kpAlIaUUpRoFU1ABmgWR0CE/Lbuc+aCdX2UKGgGaAloD0MIfA4sR8h4RECUhpRSlGgVTUAGaBZHQIT94QSSNfh1fZQoaAZoCWgPQwiGH5xPHXFYwJSGlFKUaBVLXGgWR0CFAY+yquKXdX2UKGgGaAloD0MIfV7x1CMeW8CUhpRSlGgVS0poFkdAhQV371qWT3V9lChoBmgJaA9DCBB0tKolI1XAlIaUUpRoFU2vAWgWR0CFBifPomojdX2UKGgGaAloD0MIYOl8eJYyTkCUhpRSlGgVTUAGaBZHQIUGaTW5H3F1fZQoaAZoCWgPQwgSaRt/ohZGQJSGlFKUaBVNQAZoFkdAhQwnmaH9FXV9lChoBmgJaA9DCHO8AtGTLkFAlIaUUpRoFU1ABmgWR0CFNEjZcs19dX2UKGgGaAloD0MITaJe8GnCWcCUhpRSlGgVSzpoFkdAhTdEXUH6dnV9lChoBmgJaA9DCKRv0jQo51BAlIaUUpRoFU1ABmgWR0CFQjgQ6IWQdX2UKGgGaAloD0MIbF7VWS1LUUCUhpRSlGgVTUAGaBZHQIVDYy0rsjV1fZQoaAZoCWgPQwgsD9JT5EpHQJSGlFKUaBVNQAZoFkdAhUiE74i5eHV9lChoBmgJaA9DCHef46PFgFFAlIaUUpRoFU1ABmgWR0CFSO1R+BpYdX2UKGgGaAloD0MIF0Z6UbtVXMCUhpRSlGgVS0loFkdAhUzEUbkwOHV9lChoBmgJaA9DCK8l5IOebUdAlIaUUpRoFU1ABmgWR0CFUNQemvW6dX2UKGgGaAloD0MIh2pKsg5rTECUhpRSlGgVTUAGaBZHQIVbZ31SOzZ1fZQoaAZoCWgPQwhc/67PnPdLQJSGlFKUaBVNQAZoFkdAhVyFnIyTIXV9lChoBmgJaA9DCAFp/wOsHUNAlIaUUpRoFU1ABmgWR0CFkEwsXizcdX2UKGgGaAloD0MINSVZh6NBSkCUhpRSlGgVTUAGaBZHQIWU2RxLkCF1fZQoaAZoCWgPQwj/7EeKyHhHQJSGlFKUaBVNQAZoFkdAhZjU5uIhyXV9lChoBmgJaA9DCN51NuSf80RAlIaUUpRoFU1ABmgWR0CFnN2USqVAdX2UKGgGaAloD0MI0JuKVBg6UECUhpRSlGgVTUAGaBZHQIWkdFlTWG11fZQoaAZoCWgPQwhgqwSLw3xRQJSGlFKUaBVNQAZoFkdAhaUR9w3o93V9lChoBmgJaA9DCCV0l8RZkUlAlIaUUpRoFU1ABmgWR0CFpVLL6k6+dX2UKGgGaAloD0MIiGh0B7HAWcCUhpRSlGgVS1loFkdAhanCgsbvPXV9lChoBmgJaA9DCKVOQBNhkUlAlIaUUpRoFU1ABmgWR0CFq0Q04zacdX2UKGgGaAloD0MIbcX+snu3XMCUhpRSlGgVS7RoFkdAha5fdIoVmHV9lChoBmgJaA9DCAdEiCtnzlrAlIaUUpRoFUsjaBZHQIWwOK2rn1Z1fZQoaAZoCWgPQwg1Cd6QRipRQJSGlFKUaBVNQAZoFkdAhbEtmthd+3V9lChoBmgJaA9DCBAiGXJsO0nAlIaUUpRoFU1ABmgWR0CFvDN7jT8YdX2UKGgGaAloD0MIuHU3T3XyR0CUhpRSlGgVTUAGaBZHQIW9XgaWHDd1fZQoaAZoCWgPQwhdGVQbnNRHQJSGlFKUaBVNQAZoFkdAhcKmjCYTkHV9lChoBmgJaA9DCMoxWdx/0lrAlIaUUpRoFUtKaBZHQIXscRBeHBV1fZQoaAZoCWgPQwgZPEz75l9QQJSGlFKUaBVNQAZoFkdAhezKe05U+HV9lChoBmgJaA9DCC7m54amzk5AlIaUUpRoFU1ABmgWR0CF8NaePJaJdX2UKGgGaAloD0MIqFFIMquPU0CUhpRSlGgVTUAGaBZHQIX7OSdOIqN1fZQoaAZoCWgPQwin6h7ZXDtQQJSGlFKUaBVNQAZoFkdAhfxp8fFJhHV9lChoBmgJaA9DCBtLWBtjcVvAlIaUUpRoFUuSaBZHQIYC+6/Zdv91fZQoaAZoCWgPQwjjFvNzQ+tKQJSGlFKUaBVNQAZoFkdAhgsKUVzp5nV9lChoBmgJaA9DCI6SV+cYpVBAlIaUUpRoFU1ABmgWR0CGD3Ilt0mudX2UKGgGaAloD0MIVcA9z5+sUUCUhpRSlGgVTUAGaBZHQIYTfLV4HHF1fZQoaAZoCWgPQwhZw0Xu6cJMQJSGlFKUaBVNQAZoFkdAhheNk4FRpHV9lChoBmgJaA9DCCaMZmX7ClTAlIaUUpRoFU2MA2gWR0CGG/4yGi5/dWUu"
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 224,
|
84 |
+
"n_steps": 1024,
|
85 |
+
"gamma": 0.999,
|
86 |
+
"gae_lambda": 0.98,
|
87 |
+
"ent_coef": 0.01,
|
88 |
+
"vf_coef": 0.5,
|
89 |
+
"max_grad_norm": 0.5,
|
90 |
+
"batch_size": 64,
|
91 |
+
"n_epochs": 4,
|
92 |
+
"clip_range": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
95 |
+
},
|
96 |
+
"clip_range_vf": null,
|
97 |
+
"normalize_advantage": true,
|
98 |
+
"target_kl": null
|
99 |
+
}
|
ppo-BipedalWalker-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab8b66317a5ee11d0c6e514553306fe1e302df9ede731e24fead5a4c0d64d5dd
|
3 |
+
size 101783
|
ppo-BipedalWalker-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d227db898c5955537d36350a22b3e87d05b8510da009424fdc5ad83732ef669
|
3 |
+
size 51710
|
ppo-BipedalWalker-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-BipedalWalker-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7663484e9605cb13edf2b1767f4ade5ec6b266b11da3e0210a398e914b460da
|
3 |
+
size 430665
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 126.61907592997068, "std_reward": 7.523916808736257, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-01T15:33:00.805048"}
|