Create gme_inference.py
Browse files- gme_inference.py +331 -0
gme_inference.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
from typing import Dict, List, Optional
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
from torch.utils.data import DataLoader
|
11 |
+
from tqdm.autonotebook import tqdm
|
12 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor
|
13 |
+
|
14 |
+
|
15 |
+
class GmeQwen2VL:
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
model_name: str = "Alibaba-NLP/gme-Qwen2-VL-2B-Instruct",
|
19 |
+
model_path: Optional[str] = None,
|
20 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
21 |
+
min_image_tokens=256,
|
22 |
+
max_image_tokens=1280,
|
23 |
+
max_length=1800,
|
24 |
+
**kwargs,
|
25 |
+
) -> None:
|
26 |
+
model_name = model_path or model_name
|
27 |
+
self.base = AutoModelForVision2Seq.from_pretrained(
|
28 |
+
model_name, torch_dtype=torch.float16, **kwargs
|
29 |
+
)
|
30 |
+
self.base.eval()
|
31 |
+
self.normalize = True
|
32 |
+
self.device = device
|
33 |
+
min_pixels = min_image_tokens * 28 * 28
|
34 |
+
max_pixels = max_image_tokens * 28 * 28
|
35 |
+
self.max_length = max_length
|
36 |
+
self.processor = AutoProcessor.from_pretrained(
|
37 |
+
model_name, min_pixels=min_pixels, max_pixels=max_pixels, **kwargs
|
38 |
+
)
|
39 |
+
self.processor.tokenizer.padding_side = 'right'
|
40 |
+
self.defualt_instruction = 'You are a helpful assistant.'
|
41 |
+
self.sep = ' '
|
42 |
+
|
43 |
+
def forward(
|
44 |
+
self,
|
45 |
+
input_ids: Optional[torch.LongTensor] = None,
|
46 |
+
attention_mask: Optional[torch.Tensor] = None,
|
47 |
+
position_ids: Optional[torch.LongTensor] = None,
|
48 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
49 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
50 |
+
pixel_values: Optional[torch.Tensor] = None,
|
51 |
+
# pixel_values_videos: Optional[torch.FloatTensor] = None,
|
52 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
53 |
+
# video_grid_thw: Optional[torch.LongTensor] = None,
|
54 |
+
pooling_mask: Optional[torch.LongTensor] = None,
|
55 |
+
**kwargs
|
56 |
+
) -> torch.Tensor:
|
57 |
+
if inputs_embeds is None:
|
58 |
+
inputs_embeds = self.base.model.embed_tokens(input_ids)
|
59 |
+
if pixel_values is not None:
|
60 |
+
pixel_values = pixel_values.type(self.base.visual.get_dtype())
|
61 |
+
image_embeds = self.base.visual(pixel_values, grid_thw=image_grid_thw).to(inputs_embeds.device)
|
62 |
+
image_mask = input_ids == self.base.config.image_token_id
|
63 |
+
inputs_embeds[image_mask] = image_embeds
|
64 |
+
# if pixel_values_videos is not None:
|
65 |
+
# pixel_values_videos = pixel_values_videos.type(self.base.visual.get_dtype())
|
66 |
+
# video_embeds = self.base.visual(pixel_values_videos, grid_thw=video_grid_thw).to(inputs_embeds.device)
|
67 |
+
# video_mask = input_ids == self.base.config.video_token_id
|
68 |
+
# inputs_embeds[video_mask] = video_embeds
|
69 |
+
if attention_mask is not None:
|
70 |
+
attention_mask = attention_mask.to(inputs_embeds.device)
|
71 |
+
|
72 |
+
outputs = self.base.model(
|
73 |
+
input_ids=None,
|
74 |
+
position_ids=position_ids,
|
75 |
+
attention_mask=attention_mask,
|
76 |
+
past_key_values=past_key_values,
|
77 |
+
inputs_embeds=inputs_embeds,
|
78 |
+
)
|
79 |
+
|
80 |
+
pooling_mask = attention_mask if pooling_mask is None else pooling_mask
|
81 |
+
left_padding = (pooling_mask[:, -1].sum() == pooling_mask.shape[0]) # TODO
|
82 |
+
if left_padding:
|
83 |
+
embeddings = outputs.last_hidden_state[:, -1]
|
84 |
+
else:
|
85 |
+
sequence_lengths = pooling_mask.sum(dim=1) - 1
|
86 |
+
batch_size = outputs.last_hidden_state.shape[0]
|
87 |
+
embeddings = outputs.last_hidden_state[torch.arange(
|
88 |
+
batch_size, device=outputs.last_hidden_state.device
|
89 |
+
), sequence_lengths]
|
90 |
+
if self.normalize:
|
91 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
92 |
+
return embeddings.contiguous()
|
93 |
+
|
94 |
+
def embed(self, texts: list[str], images: list[Image.Image], is_query=True, instruction=None, **kwargs):
|
95 |
+
self.base.to(self.device)
|
96 |
+
# Inputs must be batched
|
97 |
+
input_texts, input_images = list(), list()
|
98 |
+
for t, i in zip(texts, images):
|
99 |
+
if not is_query or instruction is None:
|
100 |
+
instruction = self.defualt_instruction
|
101 |
+
input_str = ''
|
102 |
+
if i is None:
|
103 |
+
input_images = None # All examples in the same batch are consistent
|
104 |
+
else:
|
105 |
+
input_str += '<|vision_start|><|image_pad|><|vision_end|>'
|
106 |
+
i = fetch_image(i)
|
107 |
+
input_images.append(i)
|
108 |
+
if t is not None:
|
109 |
+
input_str += t
|
110 |
+
msg = f'<|im_start|>system\n{instruction}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>'
|
111 |
+
input_texts.append(msg)
|
112 |
+
|
113 |
+
inputs = self.processor(
|
114 |
+
text=input_texts,
|
115 |
+
images=input_images,
|
116 |
+
padding=True,
|
117 |
+
truncation=True,
|
118 |
+
max_length=self.max_length,
|
119 |
+
return_tensors='pt'
|
120 |
+
)
|
121 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()} # TODO
|
122 |
+
with torch.no_grad():
|
123 |
+
embeddings = self.forward(**inputs)
|
124 |
+
return embeddings
|
125 |
+
|
126 |
+
def encode(self, sentences: list[str], *, prompt_name=None, **kwargs):
|
127 |
+
return self.get_fused_embeddings(texts=sentences, prompt_name=prompt_name, **kwargs)
|
128 |
+
|
129 |
+
def encode_queries(self, queries: List[str], **kwargs):
|
130 |
+
embeddings = self.encode(queries, **kwargs)
|
131 |
+
return embeddings
|
132 |
+
|
133 |
+
def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs):
|
134 |
+
if type(corpus) is dict:
|
135 |
+
sentences = [
|
136 |
+
(corpus["title"][i] + self.sep + corpus["text"][i]).strip()
|
137 |
+
if "title" in corpus
|
138 |
+
else corpus["text"][i].strip()
|
139 |
+
for i in range(len(corpus["text"]))
|
140 |
+
]
|
141 |
+
else:
|
142 |
+
sentences = [
|
143 |
+
(doc["title"] + self.sep + doc["text"]).strip() if "title" in doc else doc["text"].strip()
|
144 |
+
for doc in corpus
|
145 |
+
]
|
146 |
+
embeddings = self.encode(sentences, is_query=False, **kwargs)
|
147 |
+
return embeddings
|
148 |
+
|
149 |
+
def get_image_embeddings(self, images: list[Image.Image] | DataLoader, **kwargs):
|
150 |
+
return self.get_fused_embeddings(images=images, **kwargs)
|
151 |
+
|
152 |
+
def get_text_embeddings(self, texts: list[str], **kwargs):
|
153 |
+
return self.get_fused_embeddings(texts=texts, **kwargs)
|
154 |
+
|
155 |
+
def get_fused_embeddings(self, texts: list[str] = None, images: list[Image.Image] | DataLoader = None, **kwargs):
|
156 |
+
if isinstance(images, DataLoader):
|
157 |
+
image_loader = images
|
158 |
+
batch_size = image_loader.batch_size
|
159 |
+
image_loader.dataset.transform = None
|
160 |
+
else:
|
161 |
+
batch_size = kwargs.pop('batch_size', 32)
|
162 |
+
if images is None:
|
163 |
+
image_loader = None
|
164 |
+
else:
|
165 |
+
image_loader = DataLoader(
|
166 |
+
images,
|
167 |
+
batch_size=batch_size,
|
168 |
+
shuffle=False,
|
169 |
+
collate_fn=custom_collate_fn,
|
170 |
+
num_workers=min(math.floor(os.cpu_count() / 2), 8),
|
171 |
+
)
|
172 |
+
|
173 |
+
if texts is None:
|
174 |
+
assert image_loader is not None
|
175 |
+
n_batch = len(image_loader)
|
176 |
+
else:
|
177 |
+
n_batch = len(texts) // batch_size + int(len(texts) % batch_size > 0)
|
178 |
+
image_loader = image_loader or [None] * n_batch
|
179 |
+
|
180 |
+
all_embeddings = list()
|
181 |
+
none_batch = [None] * batch_size
|
182 |
+
show_progress_bar = kwargs.pop('show_progress_bar', True)
|
183 |
+
pbar = tqdm(total=n_batch, disable=not show_progress_bar, mininterval=1, miniters=10, desc='encode')
|
184 |
+
for n, img_batch in zip(range(0, n_batch * batch_size, batch_size), image_loader):
|
185 |
+
text_batch = none_batch if texts is None else texts[n: n+batch_size]
|
186 |
+
img_batch = none_batch if img_batch is None else img_batch
|
187 |
+
embeddings = self.embed(texts=text_batch, images=img_batch, **kwargs)
|
188 |
+
pbar.update(1)
|
189 |
+
all_embeddings.append(embeddings.cpu())
|
190 |
+
pbar.close()
|
191 |
+
all_embeddings = torch.cat(all_embeddings, dim=0)
|
192 |
+
return all_embeddings
|
193 |
+
|
194 |
+
|
195 |
+
def custom_collate_fn(batch):
|
196 |
+
return batch
|
197 |
+
|
198 |
+
|
199 |
+
### Copied from qwen_vl_utils.vision_process.py
|
200 |
+
import base64
|
201 |
+
from io import BytesIO
|
202 |
+
import requests
|
203 |
+
|
204 |
+
IMAGE_FACTOR = 28
|
205 |
+
MIN_PIXELS = 4 * 28 * 28
|
206 |
+
MAX_PIXELS = 16384 * 28 * 28
|
207 |
+
MAX_RATIO = 200
|
208 |
+
|
209 |
+
|
210 |
+
def round_by_factor(number: int, factor: int) -> int:
|
211 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
212 |
+
return round(number / factor) * factor
|
213 |
+
|
214 |
+
|
215 |
+
def ceil_by_factor(number: int, factor: int) -> int:
|
216 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
217 |
+
return math.ceil(number / factor) * factor
|
218 |
+
|
219 |
+
|
220 |
+
def floor_by_factor(number: int, factor: int) -> int:
|
221 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
222 |
+
return math.floor(number / factor) * factor
|
223 |
+
|
224 |
+
|
225 |
+
def smart_resize(
|
226 |
+
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
|
227 |
+
) -> tuple[int, int]:
|
228 |
+
"""
|
229 |
+
Rescales the image so that the following conditions are met:
|
230 |
+
|
231 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
232 |
+
|
233 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
234 |
+
|
235 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
236 |
+
"""
|
237 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
238 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
239 |
+
if h_bar * w_bar > max_pixels:
|
240 |
+
beta = math.sqrt((height * width) / max_pixels)
|
241 |
+
h_bar = floor_by_factor(height / beta, factor)
|
242 |
+
w_bar = floor_by_factor(width / beta, factor)
|
243 |
+
elif h_bar * w_bar < min_pixels:
|
244 |
+
beta = math.sqrt(min_pixels / (height * width))
|
245 |
+
h_bar = ceil_by_factor(height * beta, factor)
|
246 |
+
w_bar = ceil_by_factor(width * beta, factor)
|
247 |
+
|
248 |
+
if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
|
249 |
+
logging.warning(
|
250 |
+
f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
|
251 |
+
)
|
252 |
+
if h_bar > w_bar:
|
253 |
+
h_bar = w_bar * MAX_RATIO
|
254 |
+
else:
|
255 |
+
w_bar = h_bar * MAX_RATIO
|
256 |
+
return h_bar, w_bar
|
257 |
+
|
258 |
+
|
259 |
+
def fetch_image(image: str | Image.Image, size_factor: int = IMAGE_FACTOR) -> Image.Image:
|
260 |
+
image_obj = None
|
261 |
+
if isinstance(image, Image.Image):
|
262 |
+
image_obj = image
|
263 |
+
elif image.startswith("http://") or image.startswith("https://"):
|
264 |
+
image_obj = Image.open(requests.get(image, stream=True).raw)
|
265 |
+
elif image.startswith("file://"):
|
266 |
+
image_obj = Image.open(image[7:])
|
267 |
+
elif image.startswith("data:image"):
|
268 |
+
if "base64," in image:
|
269 |
+
_, base64_data = image.split("base64,", 1)
|
270 |
+
data = base64.b64decode(base64_data)
|
271 |
+
image_obj = Image.open(BytesIO(data))
|
272 |
+
else:
|
273 |
+
image_obj = Image.open(image)
|
274 |
+
if image_obj is None:
|
275 |
+
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
|
276 |
+
image = image_obj.convert("RGB")
|
277 |
+
## resize
|
278 |
+
# if "resized_height" in ele and "resized_width" in ele:
|
279 |
+
# resized_height, resized_width = smart_resize(
|
280 |
+
# ele["resized_height"],
|
281 |
+
# ele["resized_width"],
|
282 |
+
# factor=size_factor,
|
283 |
+
# )
|
284 |
+
# else:
|
285 |
+
width, height = image.size
|
286 |
+
# min_pixels = ele.get("min_pixels", MIN_PIXELS)
|
287 |
+
# max_pixels = ele.get("max_pixels", MAX_PIXELS)
|
288 |
+
resized_height, resized_width = smart_resize(
|
289 |
+
height,
|
290 |
+
width,
|
291 |
+
factor=size_factor,
|
292 |
+
min_pixels=MIN_PIXELS,
|
293 |
+
max_pixels=MAX_PIXELS,
|
294 |
+
)
|
295 |
+
image = image.resize((resized_width, resized_height))
|
296 |
+
|
297 |
+
return image
|
298 |
+
###
|
299 |
+
|
300 |
+
|
301 |
+
if __name__ == '__main__':
|
302 |
+
texts = [
|
303 |
+
"What kind of car is this?",
|
304 |
+
"The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023."
|
305 |
+
]
|
306 |
+
images = [
|
307 |
+
# 'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg',
|
308 |
+
'/nas-alinlp/linzhang.zx/gme_space/assets/Tesla_Cybertruck_damaged_window.jpg',
|
309 |
+
# 'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg',
|
310 |
+
'/nas-alinlp/linzhang.zx/gme_space/assets/2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg',
|
311 |
+
]
|
312 |
+
|
313 |
+
gme = GmeQwen2VL("/nas-alinlp/linzhang.zx/gme_space/gme-Qwen2-VL-2B-instruct")
|
314 |
+
|
315 |
+
# Single-modal embedding
|
316 |
+
e_text = gme.get_text_embeddings(texts=texts)
|
317 |
+
e_image = gme.get_image_embeddings(images=images)
|
318 |
+
print((e_text * e_image).sum(-1))
|
319 |
+
## tensor([0.2281, 0.6001], dtype=torch.float16)
|
320 |
+
|
321 |
+
# How to set embedding instruction
|
322 |
+
e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.')
|
323 |
+
# If is_query=False, we always use the default instruction.
|
324 |
+
e_corpus = gme.get_image_embeddings(images=images, is_query=False)
|
325 |
+
print((e_query * e_corpus).sum(-1))
|
326 |
+
## tensor([0.2433, 0.7051], dtype=torch.float16)
|
327 |
+
|
328 |
+
# Fused-modal embedding
|
329 |
+
e_fused = gme.get_fused_embeddings(texts=texts, images=images)
|
330 |
+
print((e_fused[0] * e_fused[1]).sum())
|
331 |
+
## tensor(0.6108, dtype=torch.float16)
|