from __future__ import annotations import logging import math import os from typing import Dict, List, Optional import torch from PIL import Image from torch.utils.data import DataLoader from tqdm.autonotebook import tqdm from transformers import AutoModelForVision2Seq, AutoProcessor class GmeQwen2VL: def __init__( self, model_name: str = "Alibaba-NLP/gme-Qwen2-VL-2B-Instruct", model_path: Optional[str] = None, device: str = "cuda" if torch.cuda.is_available() else "cpu", min_image_tokens=256, max_image_tokens=1280, max_length=1800, **kwargs, ) -> None: model_name = model_path or model_name self.base = AutoModelForVision2Seq.from_pretrained( model_name, torch_dtype=torch.float16, **kwargs ) self.base.eval() self.normalize = True self.device = device min_pixels = min_image_tokens * 28 * 28 max_pixels = max_image_tokens * 28 * 28 self.max_length = max_length self.processor = AutoProcessor.from_pretrained( model_name, min_pixels=min_pixels, max_pixels=max_pixels, **kwargs ) self.processor.tokenizer.padding_side = 'right' self.defualt_instruction = 'You are a helpful assistant.' self.sep = ' ' def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.Tensor] = None, # pixel_values_videos: Optional[torch.FloatTensor] = None, image_grid_thw: Optional[torch.LongTensor] = None, # video_grid_thw: Optional[torch.LongTensor] = None, pooling_mask: Optional[torch.LongTensor] = None, **kwargs ) -> torch.Tensor: if inputs_embeds is None: inputs_embeds = self.base.model.embed_tokens(input_ids) if pixel_values is not None: pixel_values = pixel_values.type(self.base.visual.get_dtype()) image_embeds = self.base.visual(pixel_values, grid_thw=image_grid_thw).to(inputs_embeds.device) image_mask = input_ids == self.base.config.image_token_id inputs_embeds[image_mask] = image_embeds # if pixel_values_videos is not None: # pixel_values_videos = pixel_values_videos.type(self.base.visual.get_dtype()) # video_embeds = self.base.visual(pixel_values_videos, grid_thw=video_grid_thw).to(inputs_embeds.device) # video_mask = input_ids == self.base.config.video_token_id # inputs_embeds[video_mask] = video_embeds if attention_mask is not None: attention_mask = attention_mask.to(inputs_embeds.device) outputs = self.base.model( input_ids=None, position_ids=position_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, ) pooling_mask = attention_mask if pooling_mask is None else pooling_mask left_padding = (pooling_mask[:, -1].sum() == pooling_mask.shape[0]) # TODO if left_padding: embeddings = outputs.last_hidden_state[:, -1] else: sequence_lengths = pooling_mask.sum(dim=1) - 1 batch_size = outputs.last_hidden_state.shape[0] embeddings = outputs.last_hidden_state[torch.arange( batch_size, device=outputs.last_hidden_state.device ), sequence_lengths] if self.normalize: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) return embeddings.contiguous() def embed(self, texts: list[str], images: list[Image.Image], is_query=True, instruction=None, **kwargs): self.base.to(self.device) # Inputs must be batched input_texts, input_images = list(), list() for t, i in zip(texts, images): if not is_query or instruction is None: instruction = self.defualt_instruction input_str = '' if i is None: input_images = None # All examples in the same batch are consistent else: input_str += '<|vision_start|><|image_pad|><|vision_end|>' i = fetch_image(i) input_images.append(i) if t is not None: input_str += t msg = f'<|im_start|>system\n{instruction}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>' input_texts.append(msg) inputs = self.processor( text=input_texts, images=input_images, padding=True, truncation=True, max_length=self.max_length, return_tensors='pt' ) inputs = {k: v.to(self.device) for k, v in inputs.items()} # TODO with torch.no_grad(): embeddings = self.forward(**inputs) return embeddings def encode(self, sentences: list[str], *, prompt_name=None, **kwargs): return self.get_fused_embeddings(texts=sentences, prompt_name=prompt_name, **kwargs) def encode_queries(self, queries: List[str], **kwargs): embeddings = self.encode(queries, **kwargs) return embeddings def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs): if type(corpus) is dict: sentences = [ (corpus["title"][i] + self.sep + corpus["text"][i]).strip() if "title" in corpus else corpus["text"][i].strip() for i in range(len(corpus["text"])) ] else: sentences = [ (doc["title"] + self.sep + doc["text"]).strip() if "title" in doc else doc["text"].strip() for doc in corpus ] embeddings = self.encode(sentences, is_query=False, **kwargs) return embeddings def get_image_embeddings(self, images: list[Image.Image] | DataLoader, **kwargs): return self.get_fused_embeddings(images=images, **kwargs) def get_text_embeddings(self, texts: list[str], **kwargs): return self.get_fused_embeddings(texts=texts, **kwargs) def get_fused_embeddings(self, texts: list[str] = None, images: list[Image.Image] | DataLoader = None, **kwargs): if isinstance(images, DataLoader): image_loader = images batch_size = image_loader.batch_size image_loader.dataset.transform = None else: batch_size = kwargs.pop('batch_size', 32) if images is None: image_loader = None else: image_loader = DataLoader( images, batch_size=batch_size, shuffle=False, collate_fn=custom_collate_fn, num_workers=min(math.floor(os.cpu_count() / 2), 8), ) if texts is None: assert image_loader is not None n_batch = len(image_loader) else: n_batch = len(texts) // batch_size + int(len(texts) % batch_size > 0) image_loader = image_loader or [None] * n_batch all_embeddings = list() none_batch = [None] * batch_size show_progress_bar = kwargs.pop('show_progress_bar', True) pbar = tqdm(total=n_batch, disable=not show_progress_bar, mininterval=1, miniters=10, desc='encode') for n, img_batch in zip(range(0, n_batch * batch_size, batch_size), image_loader): text_batch = none_batch if texts is None else texts[n: n+batch_size] img_batch = none_batch if img_batch is None else img_batch embeddings = self.embed(texts=text_batch, images=img_batch, **kwargs) pbar.update(1) all_embeddings.append(embeddings.cpu()) pbar.close() all_embeddings = torch.cat(all_embeddings, dim=0) return all_embeddings def custom_collate_fn(batch): return batch ### Copied from qwen_vl_utils.vision_process.py import base64 from io import BytesIO import requests IMAGE_FACTOR = 28 MIN_PIXELS = 4 * 28 * 28 MAX_PIXELS = 16384 * 28 * 28 MAX_RATIO = 200 def round_by_factor(number: int, factor: int) -> int: """Returns the closest integer to 'number' that is divisible by 'factor'.""" return round(number / factor) * factor def ceil_by_factor(number: int, factor: int) -> int: """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'.""" return math.ceil(number / factor) * factor def floor_by_factor(number: int, factor: int) -> int: """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'.""" return math.floor(number / factor) * factor def smart_resize( height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS ) -> tuple[int, int]: """ Rescales the image so that the following conditions are met: 1. Both dimensions (height and width) are divisible by 'factor'. 2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. 3. The aspect ratio of the image is maintained as closely as possible. """ h_bar = max(factor, round_by_factor(height, factor)) w_bar = max(factor, round_by_factor(width, factor)) if h_bar * w_bar > max_pixels: beta = math.sqrt((height * width) / max_pixels) h_bar = floor_by_factor(height / beta, factor) w_bar = floor_by_factor(width / beta, factor) elif h_bar * w_bar < min_pixels: beta = math.sqrt(min_pixels / (height * width)) h_bar = ceil_by_factor(height * beta, factor) w_bar = ceil_by_factor(width * beta, factor) if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO: logging.warning( f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}" ) if h_bar > w_bar: h_bar = w_bar * MAX_RATIO else: w_bar = h_bar * MAX_RATIO return h_bar, w_bar def fetch_image(image: str | Image.Image, size_factor: int = IMAGE_FACTOR) -> Image.Image: image_obj = None if isinstance(image, Image.Image): image_obj = image elif image.startswith("http://") or image.startswith("https://"): image_obj = Image.open(requests.get(image, stream=True).raw) elif image.startswith("file://"): image_obj = Image.open(image[7:]) elif image.startswith("data:image"): if "base64," in image: _, base64_data = image.split("base64,", 1) data = base64.b64decode(base64_data) image_obj = Image.open(BytesIO(data)) else: image_obj = Image.open(image) if image_obj is None: raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}") image = image_obj.convert("RGB") ## resize # if "resized_height" in ele and "resized_width" in ele: # resized_height, resized_width = smart_resize( # ele["resized_height"], # ele["resized_width"], # factor=size_factor, # ) # else: width, height = image.size # min_pixels = ele.get("min_pixels", MIN_PIXELS) # max_pixels = ele.get("max_pixels", MAX_PIXELS) resized_height, resized_width = smart_resize( height, width, factor=size_factor, min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS, ) image = image.resize((resized_width, resized_height)) return image ### if __name__ == '__main__': texts = [ "What kind of car is this?", "The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023." ] images = [ # 'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg', '/nas-alinlp/linzhang.zx/gme_space/assets/Tesla_Cybertruck_damaged_window.jpg', # 'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg', '/nas-alinlp/linzhang.zx/gme_space/assets/2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg', ] gme = GmeQwen2VL("/nas-alinlp/linzhang.zx/gme_space/gme-Qwen2-VL-2B-instruct") # Single-modal embedding e_text = gme.get_text_embeddings(texts=texts) e_image = gme.get_image_embeddings(images=images) print((e_text * e_image).sum(-1)) ## tensor([0.2281, 0.6001], dtype=torch.float16) # How to set embedding instruction e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.') # If is_query=False, we always use the default instruction. e_corpus = gme.get_image_embeddings(images=images, is_query=False) print((e_query * e_corpus).sum(-1)) ## tensor([0.2433, 0.7051], dtype=torch.float16) # Fused-modal embedding e_fused = gme.get_fused_embeddings(texts=texts, images=images) print((e_fused[0] * e_fused[1]).sum()) ## tensor(0.6108, dtype=torch.float16)