--- license: apache-2.0 --- ## gte-multilingual-base The **gte-multilingual-reranker-base** model is the first reranker model in the [GTE](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469) family of models, featuring several key attributes: - **High Performance**: Achieves state-of-the-art (SOTA) results in multilingual retrieval tasks and multi-task representation model evaluations when compared to reranker models of similar size. - **Training Architecture**: Trained using an encoder-only transformers architecture, resulting in a smaller model size. Unlike previous models based on decode-only LLM architecture (e.g., gte-qwen2-1.5b-instruct), this model has lower hardware requirements for inference, offering a 10x increase in inference speed. - **Long Context**: Supports text lengths up to **8192** tokens. - **Multilingual Capability**: Supports over **70** languages. ## Model Information - Model Size: 304M - Max Input Tokens: 8192 ## Requirements ``` transformers>=4.39.2 flash_attn>=2.5.6 ``` ### Usage Using Huggingface transformers ``` import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-multilingual-reranker-base') model = AutoModelForSequenceClassification.from_pretrained('Alibaba-NLP/gte-multilingual-reranker-base', trust_remote_code=True) model.eval() pairs = [["中国的首都在哪儿","北京"], ["what is the capital of China?", "北京"], ["how to implement quick sort in python?","Introduction of quick sort"]] with torch.no_grad(): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ```