Alignment-Lab-AI commited on
Commit
d721e7b
·
1 Parent(s): 57d06c0

Create caption.py

Browse files
Files changed (1) hide show
  1. caption.py +111 -0
caption.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import jsonlines
3
+ import pandas as pd
4
+ import time
5
+ from vllm import LLM, SamplingParams
6
+ from huggingface_hub import HfApi, Repository
7
+ import torch
8
+ from concurrent.futures import ThreadPoolExecutor
9
+
10
+ def generate_responses(llm, batch_texts, sampling_params):
11
+ print("Generating responses for the current batch...")
12
+ appended_prompts = [
13
+ f"you are a captioner, you only generate 3 single sentence long captions as though the text were an image, and return the captions in an enumerated list with each being one sentence long and in quotes, and each a description of a hypothetical image inspired by [{prompt}]"
14
+ for prompt in batch_texts
15
+ ]
16
+
17
+ outputs = llm.generate(appended_prompts, sampling_params)
18
+
19
+ responses = [[output.outputs[k].text.strip() for k in range(len(output.outputs))] for output in outputs]
20
+ return responses
21
+
22
+ def process_file(llm, filepath, sampling_params):
23
+ print(f"Processing file: {filepath}")
24
+ BATCH_SIZE = 128
25
+ BATCH_INCREMENT = 32
26
+ prev_eps = 0
27
+ batch_texts = []
28
+ df = pd.DataFrame()
29
+
30
+ if filepath.endswith('.parquet'):
31
+ print("Reading from a parquet file...")
32
+ df = pd.read_parquet(filepath)
33
+ batch_texts = df['TEXT'].tolist()
34
+
35
+ total_prompts = len(batch_texts)
36
+ print(f"Total prompts found: {total_prompts}")
37
+
38
+ i = 0
39
+ new_filepath = filepath.replace('.parquet', '_processed.jsonl')
40
+ print(f"Data will be saved to: {new_filepath}")
41
+
42
+ with jsonlines.open(new_filepath, 'w') as writer:
43
+ with ThreadPoolExecutor() as executor:
44
+ while i < total_prompts:
45
+ batch = batch_texts[i:i+BATCH_SIZE]
46
+
47
+ start_time = time.time()
48
+ batch_responses = generate_responses(llm, batch, sampling_params)
49
+ end_time = time.time()
50
+
51
+ duration = end_time - start_time
52
+ eps = len(batch) / duration
53
+
54
+ # Adjust batch size based on examples per second
55
+ if eps > prev_eps and BATCH_SIZE + BATCH_INCREMENT <= total_prompts - i:
56
+ BATCH_SIZE += BATCH_INCREMENT
57
+ print(f"Increasing batch size to: {BATCH_SIZE}")
58
+ elif eps < prev_eps and BATCH_SIZE - BATCH_INCREMENT > 0:
59
+ BATCH_SIZE -= BATCH_INCREMENT
60
+ print(f"Decreasing batch size to: {BATCH_SIZE}")
61
+
62
+ prev_eps = eps
63
+
64
+ # Print progress and write to file after every batch.
65
+ print(f"Processed: {min(i + BATCH_SIZE, total_prompts)}/{total_prompts}, Batch Size: {BATCH_SIZE}, EPS: {eps:.2f}")
66
+ print("Writing to the new jsonl file...")
67
+ for idx, text in enumerate(batch):
68
+ writer.write({'TEXT': text, 'RESPONSE': batch_responses[idx][0]})
69
+
70
+ # Delete the processed rows from the original parquet file
71
+ if not df.empty:
72
+ df = df.iloc[i + BATCH_SIZE:]
73
+ executor.submit(df.to_parquet, filepath)
74
+
75
+ i += BATCH_SIZE
76
+
77
+ # Delete the original parquet file if it is empty
78
+ if df.empty:
79
+ os.remove(filepath)
80
+ print(f"Deleted the original file: {filepath}")
81
+
82
+ # Initialize the HuggingFace API
83
+ api = HfApi()
84
+
85
+ # Upload the processed file to the repository
86
+ try:
87
+ api.upload_file(
88
+ path_or_fileobj=new_filepath,
89
+ path_in_repo=new_filepath,
90
+ repo_id="AlignmentLab-AI/caption_creation_0.8",
91
+ repo_type="dataset",
92
+ )
93
+ print(f"Uploaded {new_filepath} to AlignmentLab-AI/caption_creation_0.8 repository.")
94
+ except Exception as e:
95
+ print(f"Error uploading file: {e}")
96
+
97
+ def main():
98
+ folder_name = 'captionate'
99
+ sampling_params = SamplingParams(temperature=0.7, top_p=0.95, max_tokens=100)
100
+
101
+ print("Initializing the LLM model...")
102
+ llm = LLM("Open-Orca/Mistral-7B-OpenOrca")
103
+
104
+ print("Iterating through the files in the folder...")
105
+ for filename in os.listdir(folder_name):
106
+ if filename.endswith(".parquet"):
107
+ process_file(llm, os.path.join(folder_name, filename), sampling_params)
108
+
109
+ if __name__ == "__main__":
110
+ main()
111
+