File size: 11,031 Bytes
8857962 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: stroke_model.pkl
widget:
- structuredData:
Residence_type_Rural:
- true
- true
- false
Residence_type_Urban:
- false
- false
- true
age:
- 0.15771484375
- 0.7802734375
- 0.31640625
avg_glucose_level:
- 0.24563752192779986
- 0.3366263502908319
- 0.04413258240236362
avg_glucose_level/bmi:
- 0.35152096177583636
- 0.18922222093200816
- 0.12391183202584002
bmi:
- 0.10487444608567206
- 0.35007385524372225
- 0.1920236336779911
ever_married_No:
- true
- false
- true
ever_married_Yes:
- false
- true
- false
gender_Female:
- false
- true
- false
gender_Male:
- true
- false
- true
gender_Other:
- false
- false
- false
heart_disease_No:
- true
- true
- true
heart_disease_Yes:
- false
- false
- false
hypertension_No:
- true
- true
- true
hypertension_Yes:
- false
- false
- false
smoking_status_Unknown:
- false
- false
- false
smoking_status_formerly smoked:
- false
- false
- false
smoking_status_never smoked:
- true
- false
- false
smoking_status_smokes:
- false
- true
- true
work_type_Govt_job:
- false
- false
- false
work_type_Never_worked:
- false
- false
- false
work_type_Private:
- false
- false
- true
work_type_Self-employed:
- false
- true
- false
work_type_children:
- true
- false
- false
---
# Model description
The model is intended to be used to predict if a person is likely to get a stroke or not
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|-------------------------|---------------------|
| objective | binary:logistic |
| base_score | |
| booster | |
| callbacks | |
| colsample_bylevel | 0.9076228511174643 |
| colsample_bynode | |
| colsample_bytree | 0.8045246933821307 |
| device | |
| early_stopping_rounds | |
| enable_categorical | False |
| eval_metric | |
| feature_types | |
| gamma | |
| grow_policy | |
| importance_type | |
| interaction_constraints | |
| learning_rate | 0.0711965541329635 |
| max_bin | |
| max_cat_threshold | |
| max_cat_to_onehot | |
| max_delta_step | |
| max_depth | |
| max_leaves | 4 |
| min_child_weight | 0.27994747825685384 |
| missing | nan |
| monotone_constraints | |
| multi_strategy | |
| n_estimators | 35 |
| n_jobs | |
| num_parallel_tree | |
| random_state | |
| reg_alpha | 0.0009765625 |
| reg_lambda | 2.991485993669717 |
| sampling_method | |
| scale_pos_weight | |
| subsample | 0.8073913094722203 |
| tree_method | |
| validate_parameters | |
| verbosity | |
</details>
### Model Plot
<style>#sk-container-id-23 {color: black;}#sk-container-id-23 pre{padding: 0;}#sk-container-id-23 div.sk-toggleable {background-color: white;}#sk-container-id-23 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-23 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-23 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-23 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-23 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-23 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-23 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-23 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-23 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-23 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-23 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-23 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-23 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-23 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-23 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-23 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-23 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-23 div.sk-item {position: relative;z-index: 1;}#sk-container-id-23 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-23 div.sk-item::before, #sk-container-id-23 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-23 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-23 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-23 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-23 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-23 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-23 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-23 div.sk-label-container {text-align: center;}#sk-container-id-23 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-23 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-23" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=0.9076228511174643, colsample_bynode=None,colsample_bytree=0.8045246933821307, device=None,early_stopping_rounds=None, enable_categorical=False,eval_metric=None, feature_types=None, gamma=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=0.0711965541329635,max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=None, max_leaves=4,min_child_weight=0.27994747825685384, missing=nan,monotone_constraints=None, multi_strategy=None, n_estimators=35,n_jobs=None, num_parallel_tree=None, random_state=None, ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-23" type="checkbox" checked><label for="sk-estimator-id-23" class="sk-toggleable__label sk-toggleable__label-arrow">XGBClassifier</label><div class="sk-toggleable__content"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=0.9076228511174643, colsample_bynode=None,colsample_bytree=0.8045246933821307, device=None,early_stopping_rounds=None, enable_categorical=False,eval_metric=None, feature_types=None, gamma=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=0.0711965541329635,max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=None, max_leaves=4,min_child_weight=0.27994747825685384, missing=nan,monotone_constraints=None, multi_strategy=None, n_estimators=35,n_jobs=None, num_parallel_tree=None, random_state=None, ...)</pre></div></div></div></div></div>
## Evaluation Results
| Metric | Value |
|----------|---------|
| accuracy | 0.78 |
### Confusion Matrix

# How to Get Started with the Model
[More Information Needed]
# Model Card Authors
Alexander Lindström
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
[More Information Needed]
```
# precision recall f1-score support
class 0 0.98 0.78 0.87 960
class 1 0.18 0.76 0.29 62
accuracy 0.78 1022
macro avg 0.58 0.77 0.58 1022
weighted avg 0.93 0.78 0.83 1022
| Metric | Value |
|----------|---------|
| accuracy | 0.78 |
|