|
import gradio as gr |
|
import joblib |
|
import pandas as pd |
|
import numpy as np |
|
|
|
|
|
model_path = "./linear_regression_model.joblib" |
|
try: |
|
lr = joblib.load(model_path) |
|
except FileNotFoundError: |
|
raise FileNotFoundError(f"Le fichier modèle '{model_path}' est introuvable. Vérifiez le chemin.") |
|
|
|
|
|
def predict_price(kms_driven, present_price, fuel_type, seller_type, transmission, age): |
|
|
|
fuel_type_mapping = {"Petrol": 0, "Diesel": 1, "CNG": 2} |
|
seller_type_mapping = {"Dealer": 0, "Individual": 1} |
|
transmission_mapping = {"Manual": 0, "Automatic": 1} |
|
|
|
try: |
|
|
|
fuel_type = fuel_type_mapping.get(fuel_type, -1) |
|
seller_type = seller_type_mapping.get(seller_type, -1) |
|
transmission = transmission_mapping.get(transmission, -1) |
|
|
|
if fuel_type == -1 or seller_type == -1 or transmission == -1: |
|
return "Erreur : Valeurs non reconnues pour les types de carburant, vendeur ou transmission." |
|
|
|
|
|
features = np.array([kms_driven, present_price, fuel_type, seller_type, transmission, age]).reshape(1, -1) |
|
|
|
|
|
prediction = lr.predict(features)[0] |
|
return max(round(prediction, 2), 0) |
|
except Exception as e: |
|
return f"Erreur lors de la prédiction : {str(e)}" |
|
|
|
|
|
def predict_from_csv(file): |
|
|
|
fuel_type_mapping = {"Petrol": 0, "Diesel": 1, "CNG": 2} |
|
seller_type_mapping = {"Dealer": 0, "Individual": 1} |
|
transmission_mapping = {"Manual": 0, "Automatic": 1} |
|
|
|
try: |
|
|
|
data = pd.read_csv(file) |
|
|
|
|
|
required_columns = ["Kms_Driven", "Present_Price", "Fuel_Type", "Seller_Type", "Transmission", "Age"] |
|
missing_columns = [col for col in required_columns if col not in data.columns] |
|
if missing_columns: |
|
return f"Erreur : Colonnes manquantes dans le fichier CSV : {', '.join(missing_columns)}" |
|
|
|
|
|
data["Fuel_Type"] = data["Fuel_Type"].map(fuel_type_mapping) |
|
data["Seller_Type"] = data["Seller_Type"].map(seller_type_mapping) |
|
data["Transmission"] = data["Transmission"].map(transmission_mapping) |
|
|
|
|
|
if data[["Fuel_Type", "Seller_Type", "Transmission"]].isnull().any().any(): |
|
return "Erreur : Valeurs non reconnues pour Fuel_Type, Seller_Type ou Transmission dans le fichier." |
|
|
|
|
|
features = data[required_columns].values |
|
predictions = lr.predict(features) |
|
|
|
|
|
data["Predicted_Price"] = [max(pred, 0) for pred in predictions] |
|
|
|
return data |
|
except Exception as e: |
|
return f"Erreur lors de la prédiction : {str(e)}" |
|
|
|
|
|
simple_input_labels = [ |
|
gr.Number(label="Kms_Driven"), |
|
gr.Number(label="Present_Price"), |
|
gr.Dropdown(choices=["Petrol", "Diesel", "CNG"], label="Fuel_Type"), |
|
gr.Dropdown(choices=["Dealer", "Individual"], label="Seller_Type"), |
|
gr.Dropdown(choices=["Manual", "Automatic"], label="Transmission"), |
|
gr.Number(label="Age"), |
|
] |
|
simple_output = gr.Number(label="Predicted Price") |
|
|
|
|
|
csv_input = gr.File(label="Déposez votre fichier CSV") |
|
csv_output = gr.Dataframe(label="Prédictions avec fichier CSV") |
|
|
|
|
|
interface = gr.TabbedInterface( |
|
[ |
|
gr.Interface( |
|
fn=predict_price, |
|
inputs=simple_input_labels, |
|
outputs=simple_output, |
|
title="Car Price Prediction (Unique)", |
|
description="Prédisez le prix d'une voiture en entrant une seule série de caractéristiques.", |
|
), |
|
gr.Interface( |
|
fn=predict_from_csv, |
|
inputs=csv_input, |
|
outputs=csv_output, |
|
title="Car Price Prediction (Multiple)", |
|
description="Téléversez un fichier CSV contenant les données des voitures pour obtenir les prédictions de prix.", |
|
), |
|
], |
|
tab_names=["Prédiction Unique", "Prédiction Multiple"] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
interface.launch() |
|
|