Enderfga commited on
Commit
147c7f2
1 Parent(s): 874cd50

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md CHANGED
@@ -1,3 +1,66 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ # 🔥 SPHINX: A Mixer of Tasks, Domains, and Embeddings
5
+
6
+ Official implementation of ['SPHINX: A Mixer of Tasks, Domains, and Embeddings Advances Multi-modal Large Language Models']().
7
+
8
+ Try out our [web demo 🚀](http://imagebind-llm.opengvlab.com/) here!
9
+
10
+ ## News
11
+ * **[2023-10-17]** We release the demo, code, and model of SPHINX 🎉.
12
+
13
+ ## Introduction
14
+
15
+ We present $\color{goldenrod}{SPHINX}$, a versatile multi-modal large language model (MLLM) with a mixer of training tasks, data domains, and visual embeddings.
16
+
17
+ - **Task Mix.** For all-purpose capabilities, we mix a variety of vision-language tasks for mutual improvement: VQA, REC, REG, OCR, etc.
18
+
19
+ - **Embedding Mix.** We capture robust visual representations by fusing distinct visual architectures, pre-training, and granularity.
20
+
21
+ - **Domain Mix.** For data from real-world and synthetic domains, we mix the weights of two domain-specific models for complementarity.
22
+
23
+ <p align="center"> <img src="figs/pipeline.png"/ width="90%"> <br>
24
+ </p>
25
+
26
+ ## Demo
27
+ Via our proposed three-fold mixer, $\color{goldenrod}{SPHINX}$ exhibits superior multi-modal understanding and reasoning powers.
28
+ <p align="center"> <img src="figs/1.png"/ width="70%"> <br>
29
+ </p>
30
+ <p align="center"> <img src="figs/2.png"/ width="70%"> <br>
31
+ </p>
32
+ <p align="center"> <img src="figs/3.png"/ width="70%"> <br>
33
+ </p>
34
+ <p align="center"> <img src="figs/4.png"/ width="50%"> <br>
35
+ </p>
36
+ <p align="center"> <img src="figs/5.png"/ width="60%"> <br>
37
+ </p>
38
+
39
+ ## Inference
40
+ This section provides a step-by-step guide for hosting a local SPHINX demo. If you're already familiar with the LLAMA2-Accessory toolkit, note that hosting a SPHINX demo follows the same pipeline as hosting demos for the other models supported by LLAMA2-Accessory.
41
+
42
+ ### Installation
43
+ SPHINX is built upon LLaMA2-Accessory, please follow the instructions [here](https://llama2-accessory.readthedocs.io/en/latest/install.html) for environment setup.
44
+
45
+ ### Weights
46
+ We provide the beta-version checkpoints on [HuggingFace🤗](https://huggingface.co/Alpha-VLLM/LLaMA2-Accessory/tree/main/finetune/mm/sphinx-sft). Please download them to your own machine. The file structure should appear as follows:
47
+ ```
48
+ ckpt_path/
49
+ ├── consolidated.00-of-02.model.pth
50
+ └── consolidated.01-of-02.model.pth
51
+ ```
52
+
53
+ ### Host Local Demo
54
+ Execute the following command for demo hosting:
55
+ ``` bash
56
+ cd LLaMA2-Accessory/accessory
57
+ python demos/multi_turn_mm.py --n_gpus=2 \
58
+ --tokenizer_path=/path/to/tokenizer.model --llama_type=llama_ens \
59
+ --pretrained_path ckpt_path/
60
+ ```
61
+ Explanation of each argument:
62
+
63
+ + `--n_gpus`: Number of gpus to use. Utilizing more GPUs will alleviate memory usage on each GPU through model parallelism. Currently, this argument should be set to either 1 or 2, as support for *consolidated ckpt num < gpu num* is not yet available.
64
+ + `--tokenizer_path`: Path to the official LLaMA2 tokenizer. Note that the tokenizer file is the same for both LLaMA and LLaMA2. You may download it from [here](https://huggingface.co/Alpha-VLLM/LLaMA2-Accessory/blob/main/config/tokenizer.model).
65
+ + `--llama_type`: The model architecture of SPHINX is defined in [accessory/model/LLM/llama_ens.py](../accessory/model/LLM/llama_ens.py), and specifying `--llama_type=llama_ens ` tells the demo program to use this architecture.
66
+ + `--pretrained_path`: The path to pre-trained checkpoint.