AlphaRandy
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,58 +1,144 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
-
|
7 |
-
-
|
8 |
-
|
9 |
-
model-index:
|
10 |
-
- name: WhelanBot
|
11 |
-
results: []
|
12 |
-
pipeline_tag: question-answering
|
13 |
---
|
14 |
|
15 |
-
|
16 |
-
should probably proofread and complete it, then remove this comment. -->
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
29 |
|
30 |
-
##
|
31 |
|
32 |
-
|
|
|
33 |
|
34 |
-
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
-
- lr_scheduler_type: cosine
|
45 |
-
- training_steps: 250
|
46 |
-
- mixed_precision_training: Native AMP
|
47 |
|
48 |
-
|
49 |
|
|
|
|
|
|
|
50 |
|
|
|
51 |
|
52 |
-
###
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
inference:
|
3 |
+
parameters:
|
4 |
+
temperature: 0.5
|
5 |
+
widget:
|
6 |
+
- messages:
|
7 |
+
- role: user
|
8 |
+
content: Hey Bud
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
+
## Instruction format
|
|
|
12 |
|
13 |
+
This format must be strictly respected, otherwise the model will generate sub-optimal outputs.
|
14 |
|
15 |
+
The template used to build a prompt for the Instruct model is defined as follows:
|
16 |
+
```
|
17 |
+
<s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST]
|
18 |
+
```
|
19 |
+
Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings.
|
20 |
|
21 |
+
As reference, here is the pseudo-code used to tokenize instructions during fine-tuning:
|
22 |
+
```python
|
23 |
+
def tokenize(text):
|
24 |
+
return tok.encode(text, add_special_tokens=False)
|
25 |
|
26 |
+
[BOS_ID] +
|
27 |
+
tokenize("[INST]") + tokenize(USER_MESSAGE_1) + tokenize("[/INST]") +
|
28 |
+
tokenize(BOT_MESSAGE_1) + [EOS_ID] +
|
29 |
+
…
|
30 |
+
tokenize("[INST]") + tokenize(USER_MESSAGE_N) + tokenize("[/INST]") +
|
31 |
+
tokenize(BOT_MESSAGE_N) + [EOS_ID]
|
32 |
+
```
|
33 |
|
34 |
+
In the pseudo-code above, note that the `tokenize` method should not add a BOS or EOS token automatically, but should add a prefix space.
|
35 |
|
36 |
+
In the Transformers library, one can use [chat templates](https://huggingface.co/docs/transformers/main/en/chat_templating) which make sure the right format is applied.
|
37 |
|
38 |
+
## Run the model
|
39 |
|
40 |
+
```python
|
41 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
42 |
|
43 |
+
model_id = "AlphaRandy/WhelanBot"
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
45 |
|
46 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
47 |
|
48 |
+
messages = [
|
49 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
50 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
51 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
52 |
+
]
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
55 |
|
56 |
+
outputs = model.generate(inputs, max_new_tokens=20)
|
57 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
58 |
+
```
|
59 |
|
60 |
+
By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:
|
61 |
|
62 |
+
### In half-precision
|
63 |
|
64 |
+
Note `float16` precision only works on GPU devices
|
65 |
+
|
66 |
+
<details>
|
67 |
+
<summary> Click to expand </summary>
|
68 |
+
|
69 |
+
```diff
|
70 |
+
+ import torch
|
71 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
72 |
+
|
73 |
+
model_id = "AlphaRandy/WhelanBot"
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
75 |
+
|
76 |
+
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
77 |
+
|
78 |
+
messages = [
|
79 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
80 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
81 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
82 |
+
]
|
83 |
+
|
84 |
+
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
85 |
+
|
86 |
+
outputs = model.generate(input_ids, max_new_tokens=20)
|
87 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
88 |
+
```
|
89 |
+
</details>
|
90 |
+
|
91 |
+
### Lower precision using (8-bit & 4-bit) using `bitsandbytes`
|
92 |
+
|
93 |
+
<details>
|
94 |
+
<summary> Click to expand </summary>
|
95 |
+
|
96 |
+
```diff
|
97 |
+
+ import torch
|
98 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
99 |
+
|
100 |
+
model_id = "AlphaRandy/WhelanBot"
|
101 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
102 |
+
|
103 |
+
+ model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto")
|
104 |
+
|
105 |
+
text = "Hello my name is"
|
106 |
+
messages = [
|
107 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
108 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
109 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
110 |
+
]
|
111 |
+
|
112 |
+
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
113 |
+
|
114 |
+
outputs = model.generate(input_ids, max_new_tokens=20)
|
115 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
116 |
+
```
|
117 |
+
</details>
|
118 |
+
|
119 |
+
### Load the model with Flash Attention 2
|
120 |
+
|
121 |
+
<details>
|
122 |
+
<summary> Click to expand </summary>
|
123 |
+
|
124 |
+
```diff
|
125 |
+
+ import torch
|
126 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
127 |
+
|
128 |
+
model_id = "AlphaRandy/WhelanBot"
|
129 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
130 |
+
|
131 |
+
+ model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True, device_map="auto")
|
132 |
+
|
133 |
+
messages = [
|
134 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
135 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
136 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
137 |
+
]
|
138 |
+
|
139 |
+
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
140 |
+
|
141 |
+
outputs = model.generate(input_ids, max_new_tokens=20)
|
142 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
143 |
+
```
|
144 |
+
</details>
|