--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-indo-transcript results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: id split: test args: id metrics: - type: wer value: 0.5533562822719449 name: Wer --- # wav2vec2-large-xls-r-300m-indo-transcript This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.1328 - Wer: 0.5534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8447 | 6.4 | 400 | 1.0105 | 0.7504 | | 0.2777 | 12.8 | 800 | 0.9857 | 0.6325 | | 0.0963 | 19.2 | 1200 | 1.0872 | 0.5723 | | 0.0554 | 25.6 | 1600 | 1.1328 | 0.5534 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3