File size: 2,700 Bytes
cdf838f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: google/flan-t5-large
tags:
- generated_from_trainer
model-index:
- name: models
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# models

This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1902

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.3389        | 0.0699 | 500   | 0.2668          |
| 0.2719        | 0.1398 | 1000  | 0.2524          |
| 0.2612        | 0.2097 | 1500  | 0.2381          |
| 0.2634        | 0.2796 | 2000  | 0.2313          |
| 0.2403        | 0.3495 | 2500  | 0.2260          |
| 0.2433        | 0.4193 | 3000  | 0.2190          |
| 0.2351        | 0.4892 | 3500  | 0.2168          |
| 0.2424        | 0.5591 | 4000  | 0.2109          |
| 0.2198        | 0.6290 | 4500  | 0.2071          |
| 0.2313        | 0.6989 | 5000  | 0.2062          |
| 0.226         | 0.7688 | 5500  | 0.2058          |
| 0.2195        | 0.8387 | 6000  | 0.2030          |
| 0.2173        | 0.9086 | 6500  | 0.2009          |
| 0.2359        | 0.9785 | 7000  | 0.1969          |
| 0.2055        | 1.0484 | 7500  | 0.1961          |
| 0.2074        | 1.1183 | 8000  | 0.1980          |
| 0.2066        | 1.1881 | 8500  | 0.1938          |
| 0.2077        | 1.2580 | 9000  | 0.1937          |
| 0.196         | 1.3279 | 9500  | 0.1948          |
| 0.2027        | 1.3978 | 10000 | 0.1931          |
| 0.2001        | 1.4677 | 10500 | 0.1922          |
| 0.1925        | 1.5376 | 11000 | 0.1932          |
| 0.1933        | 1.6075 | 11500 | 0.1900          |
| 0.2038        | 1.6774 | 12000 | 0.1921          |
| 0.1892        | 1.7473 | 12500 | 0.1914          |
| 0.1956        | 1.8172 | 13000 | 0.1904          |
| 0.1956        | 1.8871 | 13500 | 0.1898          |
| 0.1925        | 1.9569 | 14000 | 0.1902          |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1