--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-blurr-nonblur results: [] --- # finetuned-blurr-nonblur This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2435 - Accuracy: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6486 | 1.0 | 14 | 0.6255 | 0.6646 | | 0.552 | 2.0 | 28 | 0.5737 | 0.6772 | | 0.4207 | 3.0 | 42 | 0.5175 | 0.7975 | | 0.3545 | 4.0 | 56 | 0.4484 | 0.8861 | | 0.2082 | 5.0 | 70 | 0.3621 | 0.8861 | | 0.167 | 6.0 | 84 | 0.2930 | 0.9051 | | 0.176 | 7.0 | 98 | 0.3003 | 0.8861 | | 0.1275 | 8.0 | 112 | 0.2435 | 0.9241 | | 0.11 | 9.0 | 126 | 0.2581 | 0.9051 | | 0.1009 | 10.0 | 140 | 0.2474 | 0.9114 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2