File size: 3,189 Bytes
e5ea645 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
resume: false
device: cuda
use_amp: false
seed: 100000
dataset_repo_id: lerobot/pusht
video_backend: pyav
training:
offline_steps: 200000
num_workers: 4
batch_size: 64
eval_freq: 1000
log_freq: 50
save_checkpoint: true
save_freq: 25000
online_steps: 0
online_rollout_n_episodes: 1
online_rollout_batch_size: 1
online_steps_between_rollouts: 1
online_sampling_ratio: 0.5
online_env_seed: null
online_buffer_capacity: null
online_buffer_seed_size: 0
do_online_rollout_async: false
image_transforms:
enable: false
max_num_transforms: 3
random_order: false
brightness:
weight: 1
min_max:
- 0.8
- 1.2
contrast:
weight: 1
min_max:
- 0.8
- 1.2
saturation:
weight: 1
min_max:
- 0.5
- 1.5
hue:
weight: 1
min_max:
- -0.05
- 0.05
sharpness:
weight: 1
min_max:
- 0.8
- 1.2
grad_clip_norm: 10
lr: 0.0001
lr_scheduler: cosine
lr_warmup_steps: 1000
adam_betas:
- 0.95
- 0.999
adam_eps: 1.0e-08
adam_weight_decay: 1.0e-06
transformer_weight_decay: 0.001
delta_timestamps:
observation.image:
- -0.1
- 0.0
observation.state:
- -0.1
- 0.0
action:
- -0.1
- 0.0
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
drop_n_last_frames: 7
eval:
n_episodes: 50
batch_size: 50
use_async_envs: false
wandb:
enable: true
disable_artifact: false
project: lerobot
notes: ''
fps: 10
env:
name: pusht
task: PushT-v0
image_size: 96
state_dim: 2
action_dim: 2
fps: ${fps}
episode_length: 300
gym:
obs_type: pixels_agent_pos
render_mode: rgb_array
visualization_width: 384
visualization_height: 384
override_dataset_stats:
observation.image:
mean:
- - - 0.5
- - - 0.5
- - - 0.5
std:
- - - 0.5
- - - 0.5
- - - 0.5
observation.state:
min:
- 13.456424
- 32.938293
max:
- 496.14618
- 510.9579
action:
min:
- 12.0
- 25.0
max:
- 511.0
- 511.0
policy:
name: diffusion
n_obs_steps: 2
horizon: 10
n_action_steps: 8
input_shapes:
observation.image:
- 3
- 96
- 96
observation.state:
- ${env.state_dim}
output_shapes:
action:
- ${env.action_dim}
input_normalization_modes:
observation.image: mean_std
observation.state: min_max
output_normalization_modes:
action: min_max
vision_backbone: resnet18
crop_shape:
- 84
- 84
crop_is_random: true
pretrained_backbone_weights: null
use_group_norm: true
spatial_softmax_num_keypoints: 32
down_dims:
- 512
- 1024
- 2048
kernel_size: 5
n_groups: 8
diffusion_step_embed_dim: 256
use_film_scale_modulation: true
use_transformer: true
n_layer: 8
n_head: 4
p_drop_emb: 0.0
p_drop_attn: 0.3
causal_attn: true
n_cond_layers: 0
noise_scheduler_type: DDPM
num_train_timesteps: 100
beta_schedule: squaredcos_cap_v2
beta_start: 0.0001
beta_end: 0.02
prediction_type: epsilon
clip_sample: true
clip_sample_range: 1.0
num_inference_steps: null
do_mask_loss_for_padding: false
|