File size: 2,513 Bytes
f63d35b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch
This model is a fine-tuned version of [Ameer05/model-token-repo](https://huggingface.co/Ameer05/model-token-repo) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5216
- Rouge1: 59.5791
- Rouge2: 51.3273
- Rougel: 56.9984
- Rougelsum: 59.1424
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| No log | 0.91 | 5 | 2.0124 | 53.776 | 46.7427 | 50.7565 | 53.5502 |
| No log | 1.91 | 10 | 1.6353 | 61.8019 | 53.8614 | 58.9744 | 61.339 |
| No log | 2.91 | 15 | 1.5321 | 59.7045 | 51.5968 | 57.0823 | 59.2417 |
| No log | 3.91 | 20 | 1.4569 | 62.4379 | 54.5464 | 59.9202 | 61.9242 |
| 1.5608 | 4.91 | 25 | 1.4613 | 63.3808 | 55.8818 | 61.432 | 63.0208 |
| 1.5608 | 5.91 | 30 | 1.4321 | 59.6761 | 50.9812 | 56.7977 | 59.1214 |
| 1.5608 | 6.91 | 35 | 1.4753 | 62.6439 | 54.7158 | 60.3831 | 62.1046 |
| 1.5608 | 7.91 | 40 | 1.4783 | 60.2735 | 52.7462 | 57.77 | 59.9725 |
| 0.6428 | 8.91 | 45 | 1.4974 | 62.8691 | 54.9062 | 60.3496 | 62.5132 |
| 0.6428 | 9.91 | 50 | 1.5216 | 59.5791 | 51.3273 | 56.9984 | 59.1424 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.9.1
- Datasets 1.18.4
- Tokenizers 0.10.3
|