File size: 39,047 Bytes
c0af20c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
import argparse
import itertools
import math
import os
import random
from pathlib import Path
from typing import Iterable, Optional

import numpy as np
import PIL
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import HfFolder, Repository, whoami
from neural_compressor.utils import logger
from packaging import version
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler


if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
    PIL_INTERPOLATION = {
        "linear": PIL.Image.Resampling.BILINEAR,
        "bilinear": PIL.Image.Resampling.BILINEAR,
        "bicubic": PIL.Image.Resampling.BICUBIC,
        "lanczos": PIL.Image.Resampling.LANCZOS,
        "nearest": PIL.Image.Resampling.NEAREST,
    }
else:
    PIL_INTERPOLATION = {
        "linear": PIL.Image.LINEAR,
        "bilinear": PIL.Image.BILINEAR,
        "bicubic": PIL.Image.BICUBIC,
        "lanczos": PIL.Image.LANCZOS,
        "nearest": PIL.Image.NEAREST,
    }
# ------------------------------------------------------------------------------


def save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path):
    logger.info("Saving embeddings")
    learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[placeholder_token_id]
    learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()}
    torch.save(learned_embeds_dict, save_path)


def parse_args():
    parser = argparse.ArgumentParser(description="Example of distillation for quantization on Textual Inversion.")
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save learned_embeds.bin every X updates steps.",
    )
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data."
    )
    parser.add_argument(
        "--placeholder_token",
        type=str,
        default=None,
        required=True,
        help="A token to use as a placeholder for the concept.",
    )
    parser.add_argument(
        "--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word."
    )
    parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'")
    parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=5000,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
    parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--do_quantization", action="store_true", help="Whether or not to do quantization.")
    parser.add_argument("--do_distillation", action="store_true", help="Whether or not to do distillation.")
    parser.add_argument(
        "--verify_loading", action="store_true", help="Whether or not to verify the loading of the quantized model."
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.train_data_dir is None:
        raise ValueError("You must specify a train data directory.")

    return args


imagenet_templates_small = [
    "a photo of a {}",
    "a rendering of a {}",
    "a cropped photo of the {}",
    "the photo of a {}",
    "a photo of a clean {}",
    "a photo of a dirty {}",
    "a dark photo of the {}",
    "a photo of my {}",
    "a photo of the cool {}",
    "a close-up photo of a {}",
    "a bright photo of the {}",
    "a cropped photo of a {}",
    "a photo of the {}",
    "a good photo of the {}",
    "a photo of one {}",
    "a close-up photo of the {}",
    "a rendition of the {}",
    "a photo of the clean {}",
    "a rendition of a {}",
    "a photo of a nice {}",
    "a good photo of a {}",
    "a photo of the nice {}",
    "a photo of the small {}",
    "a photo of the weird {}",
    "a photo of the large {}",
    "a photo of a cool {}",
    "a photo of a small {}",
]

imagenet_style_templates_small = [
    "a painting in the style of {}",
    "a rendering in the style of {}",
    "a cropped painting in the style of {}",
    "the painting in the style of {}",
    "a clean painting in the style of {}",
    "a dirty painting in the style of {}",
    "a dark painting in the style of {}",
    "a picture in the style of {}",
    "a cool painting in the style of {}",
    "a close-up painting in the style of {}",
    "a bright painting in the style of {}",
    "a cropped painting in the style of {}",
    "a good painting in the style of {}",
    "a close-up painting in the style of {}",
    "a rendition in the style of {}",
    "a nice painting in the style of {}",
    "a small painting in the style of {}",
    "a weird painting in the style of {}",
    "a large painting in the style of {}",
]


# Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14
class EMAModel:
    """
    Exponential Moving Average of models weights
    """

    def __init__(self, parameters: Iterable[torch.nn.Parameter], decay=0.9999):
        parameters = list(parameters)
        self.shadow_params = [p.clone().detach() for p in parameters]

        self.decay = decay
        self.optimization_step = 0

    def get_decay(self, optimization_step):
        """
        Compute the decay factor for the exponential moving average.
        """
        value = (1 + optimization_step) / (10 + optimization_step)
        return 1 - min(self.decay, value)

    @torch.no_grad()
    def step(self, parameters):
        parameters = list(parameters)

        self.optimization_step += 1
        self.decay = self.get_decay(self.optimization_step)

        for s_param, param in zip(self.shadow_params, parameters):
            if param.requires_grad:
                tmp = self.decay * (s_param - param)
                s_param.sub_(tmp)
            else:
                s_param.copy_(param)

        torch.cuda.empty_cache()

    def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        """
        Copy current averaged parameters into given collection of parameters.
        Args:
            parameters: Iterable of `torch.nn.Parameter`; the parameters to be
                updated with the stored moving averages. If `None`, the
                parameters with which this `ExponentialMovingAverage` was
                initialized will be used.
        """
        parameters = list(parameters)
        for s_param, param in zip(self.shadow_params, parameters):
            param.data.copy_(s_param.data)

    def to(self, device=None, dtype=None) -> None:
        r"""Move internal buffers of the ExponentialMovingAverage to `device`.
        Args:
            device: like `device` argument to `torch.Tensor.to`
        """
        # .to() on the tensors handles None correctly
        self.shadow_params = [
            p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
            for p in self.shadow_params
        ]


class TextualInversionDataset(Dataset):
    def __init__(
        self,
        data_root,
        tokenizer,
        learnable_property="object",  # [object, style]
        size=512,
        repeats=100,
        interpolation="bicubic",
        flip_p=0.5,
        set="train",
        placeholder_token="*",
        center_crop=False,
    ):
        self.data_root = data_root
        self.tokenizer = tokenizer
        self.learnable_property = learnable_property
        self.size = size
        self.placeholder_token = placeholder_token
        self.center_crop = center_crop
        self.flip_p = flip_p

        self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]

        self.num_images = len(self.image_paths)
        self._length = self.num_images

        if set == "train":
            self._length = self.num_images * repeats

        self.interpolation = {
            "linear": PIL_INTERPOLATION["linear"],
            "bilinear": PIL_INTERPOLATION["bilinear"],
            "bicubic": PIL_INTERPOLATION["bicubic"],
            "lanczos": PIL_INTERPOLATION["lanczos"],
        }[interpolation]

        self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
        self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)

    def __len__(self):
        return self._length

    def __getitem__(self, i):
        example = {}
        image = Image.open(self.image_paths[i % self.num_images])

        if not image.mode == "RGB":
            image = image.convert("RGB")

        placeholder_string = self.placeholder_token
        text = random.choice(self.templates).format(placeholder_string)

        example["input_ids"] = self.tokenizer(
            text,
            padding="max_length",
            truncation=True,
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        ).input_ids[0]

        # default to score-sde preprocessing
        img = np.array(image).astype(np.uint8)

        if self.center_crop:
            crop = min(img.shape[0], img.shape[1])
            (
                h,
                w,
            ) = (
                img.shape[0],
                img.shape[1],
            )
            img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]

        image = Image.fromarray(img)
        image = image.resize((self.size, self.size), resample=self.interpolation)

        image = self.flip_transform(image)
        image = np.array(image).astype(np.uint8)
        image = (image / 127.5 - 1.0).astype(np.float32)

        example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
        return example


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


def freeze_params(params):
    for param in params:
        param.requires_grad = False


def image_grid(imgs, rows, cols):
    if not len(imgs) == rows * cols:
        raise ValueError("The specified number of rows and columns are not correct.")

    w, h = imgs[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


def generate_images(pipeline, prompt="", guidance_scale=7.5, num_inference_steps=50, num_images_per_prompt=1, seed=42):
    generator = torch.Generator(pipeline.device).manual_seed(seed)
    images = pipeline(
        prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
        num_images_per_prompt=num_images_per_prompt,
    ).images
    _rows = int(math.sqrt(num_images_per_prompt))
    grid = image_grid(images, rows=_rows, cols=num_images_per_prompt // _rows)
    return grid


def main():
    args = parse_args()
    logging_dir = os.path.join(args.output_dir, args.logging_dir)

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with="tensorboard",
        project_config=accelerator_project_config,
    )

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

    # Load the tokenizer and add the placeholder token as a additional special token
    if args.tokenizer_name:
        tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
    elif args.pretrained_model_name_or_path:
        tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")

    # Load models and create wrapper for stable diffusion
    noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
    text_encoder = CLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=args.revision,
    )
    vae = AutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="vae",
        revision=args.revision,
    )
    unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="unet",
        revision=args.revision,
    )

    train_unet = False
    # Freeze vae and unet
    freeze_params(vae.parameters())
    if not args.do_quantization and not args.do_distillation:
        # Add the placeholder token in tokenizer
        num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
        if num_added_tokens == 0:
            raise ValueError(
                f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
                " `placeholder_token` that is not already in the tokenizer."
            )

        # Convert the initializer_token, placeholder_token to ids
        token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
        # Check if initializer_token is a single token or a sequence of tokens
        if len(token_ids) > 1:
            raise ValueError("The initializer token must be a single token.")

        initializer_token_id = token_ids[0]
        placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)
        # Resize the token embeddings as we are adding new special tokens to the tokenizer
        text_encoder.resize_token_embeddings(len(tokenizer))

        # Initialise the newly added placeholder token with the embeddings of the initializer token
        token_embeds = text_encoder.get_input_embeddings().weight.data
        token_embeds[placeholder_token_id] = token_embeds[initializer_token_id]

        freeze_params(unet.parameters())
        # Freeze all parameters except for the token embeddings in text encoder
        params_to_freeze = itertools.chain(
            text_encoder.text_model.encoder.parameters(),
            text_encoder.text_model.final_layer_norm.parameters(),
            text_encoder.text_model.embeddings.position_embedding.parameters(),
        )
        freeze_params(params_to_freeze)
    else:
        train_unet = True
        freeze_params(text_encoder.parameters())

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Initialize the optimizer
    optimizer = torch.optim.AdamW(
        # only optimize the unet or embeddings of text_encoder
        unet.parameters() if train_unet else text_encoder.get_input_embeddings().parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    train_dataset = TextualInversionDataset(
        data_root=args.train_data_dir,
        tokenizer=tokenizer,
        size=args.resolution,
        placeholder_token=args.placeholder_token,
        repeats=args.repeats,
        learnable_property=args.learnable_property,
        center_crop=args.center_crop,
        set="train",
    )
    train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True)

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
    )

    if not train_unet:
        text_encoder = accelerator.prepare(text_encoder)
        unet.to(accelerator.device)
        unet.eval()
    else:
        unet = accelerator.prepare(unet)
        text_encoder.to(accelerator.device)
        text_encoder.eval()
    optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler)

    # Move vae to device
    vae.to(accelerator.device)

    # Keep vae in eval model as we don't train these
    vae.eval()

    compression_manager = None

    def train_func(model):
        if train_unet:
            unet_ = model
            text_encoder_ = text_encoder
        else:
            unet_ = unet
            text_encoder_ = model
        # We need to recalculate our total training steps as the size of the training dataloader may have changed.
        num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
        if overrode_max_train_steps:
            args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        # Afterwards we recalculate our number of training epochs
        args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

        # We need to initialize the trackers we use, and also store our configuration.
        # The trackers initializes automatically on the main process.
        if accelerator.is_main_process:
            accelerator.init_trackers("textual_inversion", config=vars(args))

        # Train!
        total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

        logger.info("***** Running training *****")
        logger.info(f"  Num examples = {len(train_dataset)}")
        logger.info(f"  Num Epochs = {args.num_train_epochs}")
        logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
        logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
        logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
        logger.info(f"  Total optimization steps = {args.max_train_steps}")
        # Only show the progress bar once on each machine.
        progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
        progress_bar.set_description("Steps")
        global_step = 0

        if train_unet and args.use_ema:
            ema_unet = EMAModel(unet_.parameters())

        for epoch in range(args.num_train_epochs):
            model.train()
            train_loss = 0.0
            for step, batch in enumerate(train_dataloader):
                with accelerator.accumulate(model):
                    # Convert images to latent space
                    latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach()
                    latents = latents * 0.18215

                    # Sample noise that we'll add to the latents
                    noise = torch.randn(latents.shape).to(latents.device)
                    bsz = latents.shape[0]
                    # Sample a random timestep for each image
                    timesteps = torch.randint(
                        0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
                    ).long()

                    # Add noise to the latents according to the noise magnitude at each timestep
                    # (this is the forward diffusion process)
                    noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                    # Get the text embedding for conditioning
                    encoder_hidden_states = text_encoder_(batch["input_ids"])[0]

                    # Predict the noise residual
                    model_pred = unet_(noisy_latents, timesteps, encoder_hidden_states).sample

                    loss = F.mse_loss(model_pred, noise, reduction="none").mean([1, 2, 3]).mean()
                    if train_unet and compression_manager:
                        unet_inputs = {
                            "sample": noisy_latents,
                            "timestep": timesteps,
                            "encoder_hidden_states": encoder_hidden_states,
                        }
                        loss = compression_manager.callbacks.on_after_compute_loss(unet_inputs, model_pred, loss)

                    # Gather the losses across all processes for logging (if we use distributed training).
                    avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
                    train_loss += avg_loss.item() / args.gradient_accumulation_steps

                    # Backpropagate
                    accelerator.backward(loss)

                    if train_unet:
                        if accelerator.sync_gradients:
                            accelerator.clip_grad_norm_(unet_.parameters(), args.max_grad_norm)
                    else:
                        # Zero out the gradients for all token embeddings except the newly added
                        # embeddings for the concept, as we only want to optimize the concept embeddings
                        if accelerator.num_processes > 1:
                            grads = text_encoder_.module.get_input_embeddings().weight.grad
                        else:
                            grads = text_encoder_.get_input_embeddings().weight.grad
                        # Get the index for tokens that we want to zero the grads for
                        index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id
                        grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0)

                    optimizer.step()
                    lr_scheduler.step()
                    optimizer.zero_grad()

                # Checks if the accelerator has performed an optimization step behind the scenes
                if accelerator.sync_gradients:
                    if train_unet and args.use_ema:
                        ema_unet.step(unet_.parameters())
                    progress_bar.update(1)
                    global_step += 1
                    accelerator.log({"train_loss": train_loss}, step=global_step)
                    train_loss = 0.0
                    if not train_unet and global_step % args.save_steps == 0:
                        save_path = os.path.join(args.output_dir, f"learned_embeds-steps-{global_step}.bin")
                        save_progress(text_encoder_, placeholder_token_id, accelerator, args, save_path)

                logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
                progress_bar.set_postfix(**logs)
                accelerator.log(logs, step=global_step)

                if global_step >= args.max_train_steps:
                    break
            accelerator.wait_for_everyone()

        if train_unet and args.use_ema:
            ema_unet.copy_to(unet_.parameters())

        if not train_unet:
            return text_encoder_

    if not train_unet:
        text_encoder = train_func(text_encoder)
    else:
        import copy

        model = copy.deepcopy(unet)
        confs = []
        if args.do_quantization:
            from neural_compressor import QuantizationAwareTrainingConfig

            q_conf = QuantizationAwareTrainingConfig()
            confs.append(q_conf)

        if args.do_distillation:
            teacher_model = copy.deepcopy(model)

            def attention_fetcher(x):
                return x.sample

            layer_mappings = [
                [
                    [
                        "conv_in",
                    ]
                ],
                [
                    [
                        "time_embedding",
                    ]
                ],
                [["down_blocks.0.attentions.0", attention_fetcher]],
                [["down_blocks.0.attentions.1", attention_fetcher]],
                [
                    [
                        "down_blocks.0.resnets.0",
                    ]
                ],
                [
                    [
                        "down_blocks.0.resnets.1",
                    ]
                ],
                [
                    [
                        "down_blocks.0.downsamplers.0",
                    ]
                ],
                [["down_blocks.1.attentions.0", attention_fetcher]],
                [["down_blocks.1.attentions.1", attention_fetcher]],
                [
                    [
                        "down_blocks.1.resnets.0",
                    ]
                ],
                [
                    [
                        "down_blocks.1.resnets.1",
                    ]
                ],
                [
                    [
                        "down_blocks.1.downsamplers.0",
                    ]
                ],
                [["down_blocks.2.attentions.0", attention_fetcher]],
                [["down_blocks.2.attentions.1", attention_fetcher]],
                [
                    [
                        "down_blocks.2.resnets.0",
                    ]
                ],
                [
                    [
                        "down_blocks.2.resnets.1",
                    ]
                ],
                [
                    [
                        "down_blocks.2.downsamplers.0",
                    ]
                ],
                [
                    [
                        "down_blocks.3.resnets.0",
                    ]
                ],
                [
                    [
                        "down_blocks.3.resnets.1",
                    ]
                ],
                [
                    [
                        "up_blocks.0.resnets.0",
                    ]
                ],
                [
                    [
                        "up_blocks.0.resnets.1",
                    ]
                ],
                [
                    [
                        "up_blocks.0.resnets.2",
                    ]
                ],
                [
                    [
                        "up_blocks.0.upsamplers.0",
                    ]
                ],
                [["up_blocks.1.attentions.0", attention_fetcher]],
                [["up_blocks.1.attentions.1", attention_fetcher]],
                [["up_blocks.1.attentions.2", attention_fetcher]],
                [
                    [
                        "up_blocks.1.resnets.0",
                    ]
                ],
                [
                    [
                        "up_blocks.1.resnets.1",
                    ]
                ],
                [
                    [
                        "up_blocks.1.resnets.2",
                    ]
                ],
                [
                    [
                        "up_blocks.1.upsamplers.0",
                    ]
                ],
                [["up_blocks.2.attentions.0", attention_fetcher]],
                [["up_blocks.2.attentions.1", attention_fetcher]],
                [["up_blocks.2.attentions.2", attention_fetcher]],
                [
                    [
                        "up_blocks.2.resnets.0",
                    ]
                ],
                [
                    [
                        "up_blocks.2.resnets.1",
                    ]
                ],
                [
                    [
                        "up_blocks.2.resnets.2",
                    ]
                ],
                [
                    [
                        "up_blocks.2.upsamplers.0",
                    ]
                ],
                [["up_blocks.3.attentions.0", attention_fetcher]],
                [["up_blocks.3.attentions.1", attention_fetcher]],
                [["up_blocks.3.attentions.2", attention_fetcher]],
                [
                    [
                        "up_blocks.3.resnets.0",
                    ]
                ],
                [
                    [
                        "up_blocks.3.resnets.1",
                    ]
                ],
                [
                    [
                        "up_blocks.3.resnets.2",
                    ]
                ],
                [["mid_block.attentions.0", attention_fetcher]],
                [
                    [
                        "mid_block.resnets.0",
                    ]
                ],
                [
                    [
                        "mid_block.resnets.1",
                    ]
                ],
                [
                    [
                        "conv_out",
                    ]
                ],
            ]
            layer_names = [layer_mapping[0][0] for layer_mapping in layer_mappings]
            if not set(layer_names).issubset([n[0] for n in model.named_modules()]):
                raise ValueError(
                    "Provided model is not compatible with the default layer_mappings, "
                    'please use the model fine-tuned from "CompVis/stable-diffusion-v1-4", '
                    "or modify the layer_mappings variable to fit your model."
                    f"\nDefault layer_mappings are as such:\n{layer_mappings}"
                )
            from neural_compressor.config import DistillationConfig, IntermediateLayersKnowledgeDistillationLossConfig

            distillation_criterion = IntermediateLayersKnowledgeDistillationLossConfig(
                layer_mappings=layer_mappings,
                loss_types=["MSE"] * len(layer_mappings),
                loss_weights=[1.0 / len(layer_mappings)] * len(layer_mappings),
                add_origin_loss=True,
            )
            d_conf = DistillationConfig(teacher_model=teacher_model, criterion=distillation_criterion)
            confs.append(d_conf)

        from neural_compressor.training import prepare_compression

        compression_manager = prepare_compression(model, confs)
        compression_manager.callbacks.on_train_begin()
        model = compression_manager.model
        train_func(model)
        compression_manager.callbacks.on_train_end()

        # Save the resulting model and its corresponding configuration in the given directory
        model.save(args.output_dir)

        logger.info(f"Optimized model saved to: {args.output_dir}.")

        # change to framework model for further use
        model = model.model

    # Create the pipeline using using the trained modules and save it.
    templates = imagenet_style_templates_small if args.learnable_property == "style" else imagenet_templates_small
    prompt = templates[0].format(args.placeholder_token)
    if accelerator.is_main_process:
        pipeline = StableDiffusionPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            text_encoder=accelerator.unwrap_model(text_encoder),
            vae=vae,
            unet=accelerator.unwrap_model(unet),
            tokenizer=tokenizer,
        )
        pipeline.save_pretrained(args.output_dir)
        pipeline = pipeline.to(unet.device)
        baseline_model_images = generate_images(pipeline, prompt=prompt, seed=args.seed)
        baseline_model_images.save(
            os.path.join(args.output_dir, "{}_baseline_model.png".format("_".join(prompt.split())))
        )

        if not train_unet:
            # Also save the newly trained embeddings
            save_path = os.path.join(args.output_dir, "learned_embeds.bin")
            save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path)
        else:
            setattr(pipeline, "unet", accelerator.unwrap_model(model))
            if args.do_quantization:
                pipeline = pipeline.to(torch.device("cpu"))

            optimized_model_images = generate_images(pipeline, prompt=prompt, seed=args.seed)
            optimized_model_images.save(
                os.path.join(args.output_dir, "{}_optimized_model.png".format("_".join(prompt.split())))
            )

        if args.push_to_hub:
            repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)

    accelerator.end_training()

    if args.do_quantization and args.verify_loading:
        # Load the model obtained after Intel Neural Compressor quantization
        from neural_compressor.utils.pytorch import load

        loaded_model = load(args.output_dir, model=unet)
        loaded_model.eval()

        setattr(pipeline, "unet", loaded_model)
        if args.do_quantization:
            pipeline = pipeline.to(torch.device("cpu"))

        loaded_model_images = generate_images(pipeline, prompt=prompt, seed=args.seed)
        if loaded_model_images != optimized_model_images:
            logger.info("The quantized model was not successfully loaded.")
        else:
            logger.info("The quantized model was successfully loaded.")


if __name__ == "__main__":
    main()