File size: 14,298 Bytes
c0af20c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import tempfile
import unittest

import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    DDIMInverseScheduler,
    DDIMScheduler,
    DPMSolverMultistepInverseScheduler,
    DPMSolverMultistepScheduler,
    StableDiffusionDiffEditPipeline,
    UNet2DConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device

from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin


enable_full_determinism()


class StableDiffusionDiffEditPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
    pipeline_class = StableDiffusionDiffEditPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"}
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"}
    image_params = frozenset(
        []
    )  # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
    image_latents_params = frozenset([])

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        inverse_scheduler = DDIMInverseScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_zero=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=512,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "inverse_scheduler": inverse_scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        mask = floats_tensor((1, 16, 16), rng=random.Random(seed)).to(device)
        latents = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "a dog and a newt",
            "mask_image": mask,
            "image_latents": latents,
            "generator": generator,
            "num_inference_steps": 2,
            "inpaint_strength": 1.0,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }

        return inputs

    def get_dummy_mask_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        image = Image.fromarray(np.uint8(image)).convert("RGB")
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "image": image,
            "source_prompt": "a cat and a frog",
            "target_prompt": "a dog and a newt",
            "generator": generator,
            "num_inference_steps": 2,
            "num_maps_per_mask": 2,
            "mask_encode_strength": 1.0,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }

        return inputs

    def get_dummy_inversion_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        image = Image.fromarray(np.uint8(image)).convert("RGB")
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "image": image,
            "prompt": "a cat and a frog",
            "generator": generator,
            "num_inference_steps": 2,
            "inpaint_strength": 1.0,
            "guidance_scale": 6.0,
            "decode_latents": True,
            "output_type": "numpy",
        }
        return inputs

    def test_save_load_optional_components(self):
        if not hasattr(self.pipeline_class, "_optional_components"):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # set all optional components to None and update pipeline config accordingly
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)
        pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components})

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(output - output_loaded).max()
        self.assertLess(max_diff, 1e-4)

    def test_mask(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_mask_inputs(device)
        mask = pipe.generate_mask(**inputs)
        mask_slice = mask[0, -3:, -3:]

        self.assertEqual(mask.shape, (1, 16, 16))
        expected_slice = np.array([0] * 9)
        max_diff = np.abs(mask_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)
        self.assertEqual(mask[0, -3, -4], 0)

    def test_inversion(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inversion_inputs(device)
        image = pipe.invert(**inputs).images
        image_slice = image[0, -1, -3:, -3:]

        self.assertEqual(image.shape, (2, 32, 32, 3))
        expected_slice = np.array(
            [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5105, 0.5015, 0.4407, 0.4799],
        )
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=5e-3)

    def test_inversion_dpm(self):
        device = "cpu"

        components = self.get_dummy_components()

        scheduler_args = {"beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear"}
        components["scheduler"] = DPMSolverMultistepScheduler(**scheduler_args)
        components["inverse_scheduler"] = DPMSolverMultistepInverseScheduler(**scheduler_args)

        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inversion_inputs(device)
        image = pipe.invert(**inputs).images
        image_slice = image[0, -1, -3:, -3:]

        self.assertEqual(image.shape, (2, 32, 32, 3))
        expected_slice = np.array(
            [0.5305, 0.4673, 0.5314, 0.5308, 0.4886, 0.5279, 0.5142, 0.4724, 0.4892],
        )
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)


@require_torch_gpu
@slow
class StableDiffusionDiffEditPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    @classmethod
    def setUpClass(cls):
        raw_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png"
        )

        raw_image = raw_image.convert("RGB").resize((768, 768))

        cls.raw_image = raw_image

    def test_stable_diffusion_diffedit_full(self):
        generator = torch.manual_seed(0)

        pipe = StableDiffusionDiffEditPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
        )
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        source_prompt = "a bowl of fruit"
        target_prompt = "a bowl of pears"

        mask_image = pipe.generate_mask(
            image=self.raw_image,
            source_prompt=source_prompt,
            target_prompt=target_prompt,
            generator=generator,
        )

        inv_latents = pipe.invert(
            prompt=source_prompt, image=self.raw_image, inpaint_strength=0.7, generator=generator
        ).latents

        image = pipe(
            prompt=target_prompt,
            mask_image=mask_image,
            image_latents=inv_latents,
            generator=generator,
            negative_prompt=source_prompt,
            inpaint_strength=0.7,
            output_type="numpy",
        ).images[0]

        expected_image = (
            np.array(
                load_image(
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/diffedit/pears.png"
                ).resize((768, 768))
            )
            / 255
        )
        assert np.abs((expected_image - image).max()) < 5e-1

    def test_stable_diffusion_diffedit_dpm(self):
        generator = torch.manual_seed(0)

        pipe = StableDiffusionDiffEditPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
        )
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
        pipe.inverse_scheduler = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config)
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        source_prompt = "a bowl of fruit"
        target_prompt = "a bowl of pears"

        mask_image = pipe.generate_mask(
            image=self.raw_image,
            source_prompt=source_prompt,
            target_prompt=target_prompt,
            generator=generator,
        )

        inv_latents = pipe.invert(
            prompt=source_prompt,
            image=self.raw_image,
            inpaint_strength=0.7,
            generator=generator,
            num_inference_steps=25,
        ).latents

        image = pipe(
            prompt=target_prompt,
            mask_image=mask_image,
            image_latents=inv_latents,
            generator=generator,
            negative_prompt=source_prompt,
            inpaint_strength=0.7,
            num_inference_steps=25,
            output_type="numpy",
        ).images[0]

        expected_image = (
            np.array(
                load_image(
                    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                    "/diffedit/pears.png"
                ).resize((768, 768))
            )
            / 255
        )
        assert np.abs((expected_image - image).max()) < 5e-1