|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer |
|
|
|
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel |
|
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( |
|
RobertaSeriesConfig, |
|
RobertaSeriesModelWithTransformation, |
|
) |
|
from diffusers.utils import slow, torch_device |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class AltDiffusionPipelineFastTests( |
|
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase |
|
): |
|
pipeline_class = AltDiffusionPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
projection_dim=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=5002, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
|
|
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") |
|
tokenizer.model_max_length = 77 |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3) |
|
|
|
def test_alt_diffusion_ddim(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
torch.manual_seed(0) |
|
text_encoder_config = RobertaSeriesConfig( |
|
hidden_size=32, |
|
project_dim=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
vocab_size=5002, |
|
) |
|
|
|
text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) |
|
components["text_encoder"] = text_encoder |
|
|
|
alt_pipe = AltDiffusionPipeline(**components) |
|
alt_pipe = alt_pipe.to(device) |
|
alt_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["prompt"] = "A photo of an astronaut" |
|
output = alt_pipe(**inputs) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array( |
|
[0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_alt_diffusion_pndm(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True) |
|
torch.manual_seed(0) |
|
text_encoder_config = RobertaSeriesConfig( |
|
hidden_size=32, |
|
project_dim=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
vocab_size=5002, |
|
) |
|
|
|
text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) |
|
components["text_encoder"] = text_encoder |
|
alt_pipe = AltDiffusionPipeline(**components) |
|
alt_pipe = alt_pipe.to(device) |
|
alt_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = alt_pipe(**inputs) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array( |
|
[0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class AltDiffusionPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_alt_diffusion(self): |
|
|
|
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None) |
|
alt_pipe = alt_pipe.to(torch_device) |
|
alt_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.manual_seed(0) |
|
output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np") |
|
|
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_alt_diffusion_fast_ddim(self): |
|
scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler") |
|
|
|
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None) |
|
alt_pipe = alt_pipe.to(torch_device) |
|
alt_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.manual_seed(0) |
|
|
|
output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy") |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|