diffusers / tests /pipelines /consistency_models /test_consistency_models.py
Aminrabi's picture
End of training
c0af20c
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNet2DModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_2, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class ConsistencyModelPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = ConsistencyModelPipeline
params = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
batch_params = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
]
)
@property
def dummy_uncond_unet(self):
unet = UNet2DModel.from_pretrained(
"diffusers/consistency-models-test",
subfolder="test_unet",
)
return unet
@property
def dummy_cond_unet(self):
unet = UNet2DModel.from_pretrained(
"diffusers/consistency-models-test",
subfolder="test_unet_class_cond",
)
return unet
def get_dummy_components(self, class_cond=False):
if class_cond:
unet = self.dummy_cond_unet
else:
unet = self.dummy_uncond_unet
# Default to CM multistep sampler
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
components = {
"unet": unet,
"scheduler": scheduler,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"batch_size": 1,
"num_inference_steps": None,
"timesteps": [22, 0],
"generator": generator,
"output_type": "np",
}
return inputs
def test_consistency_model_pipeline_multistep(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = ConsistencyModelPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_consistency_model_pipeline_multistep_class_cond(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components(class_cond=True)
pipe = ConsistencyModelPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["class_labels"] = 0
image = pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_consistency_model_pipeline_onestep(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = ConsistencyModelPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["num_inference_steps"] = 1
inputs["timesteps"] = None
image = pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_consistency_model_pipeline_onestep_class_cond(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components(class_cond=True)
pipe = ConsistencyModelPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["num_inference_steps"] = 1
inputs["timesteps"] = None
inputs["class_labels"] = 0
image = pipe(**inputs).images
assert image.shape == (1, 32, 32, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@slow
@require_torch_gpu
class ConsistencyModelPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, seed=0, get_fixed_latents=False, device="cpu", dtype=torch.float32, shape=(1, 3, 64, 64)):
generator = torch.manual_seed(seed)
inputs = {
"num_inference_steps": None,
"timesteps": [22, 0],
"class_labels": 0,
"generator": generator,
"output_type": "np",
}
if get_fixed_latents:
latents = self.get_fixed_latents(seed=seed, device=device, dtype=dtype, shape=shape)
inputs["latents"] = latents
return inputs
def get_fixed_latents(self, seed=0, device="cpu", dtype=torch.float32, shape=(1, 3, 64, 64)):
if type(device) == str:
device = torch.device(device)
generator = torch.Generator(device=device).manual_seed(seed)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
def test_consistency_model_cd_multistep(self):
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2")
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device=torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
image = pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254])
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def test_consistency_model_cd_onestep(self):
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2")
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device=torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
inputs["num_inference_steps"] = 1
inputs["timesteps"] = None
image = pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217])
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
@require_torch_2
def test_consistency_model_cd_multistep_flash_attn(self):
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2")
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device=torch_device, torch_dtype=torch.float16)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(get_fixed_latents=True, device=torch_device)
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
image = pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@require_torch_2
def test_consistency_model_cd_onestep_flash_attn(self):
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2")
scheduler = CMStochasticIterativeScheduler(
num_train_timesteps=40,
sigma_min=0.002,
sigma_max=80.0,
)
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler)
pipe.to(torch_device=torch_device, torch_dtype=torch.float16)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(get_fixed_latents=True, device=torch_device)
inputs["num_inference_steps"] = 1
inputs["timesteps"] = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
image = pipe(**inputs).images
assert image.shape == (1, 64, 64, 3)
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3