|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from torch.backends.cuda import sdp_kernel |
|
|
|
from diffusers import ( |
|
CMStochasticIterativeScheduler, |
|
ConsistencyModelPipeline, |
|
UNet2DModel, |
|
) |
|
from diffusers.utils import randn_tensor, slow, torch_device |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_2, require_torch_gpu |
|
|
|
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class ConsistencyModelPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = ConsistencyModelPipeline |
|
params = UNCONDITIONAL_IMAGE_GENERATION_PARAMS |
|
batch_params = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS |
|
|
|
|
|
required_optional_params = frozenset( |
|
[ |
|
"num_inference_steps", |
|
"generator", |
|
"latents", |
|
"output_type", |
|
"return_dict", |
|
"callback", |
|
"callback_steps", |
|
] |
|
) |
|
|
|
@property |
|
def dummy_uncond_unet(self): |
|
unet = UNet2DModel.from_pretrained( |
|
"diffusers/consistency-models-test", |
|
subfolder="test_unet", |
|
) |
|
return unet |
|
|
|
@property |
|
def dummy_cond_unet(self): |
|
unet = UNet2DModel.from_pretrained( |
|
"diffusers/consistency-models-test", |
|
subfolder="test_unet_class_cond", |
|
) |
|
return unet |
|
|
|
def get_dummy_components(self, class_cond=False): |
|
if class_cond: |
|
unet = self.dummy_cond_unet |
|
else: |
|
unet = self.dummy_uncond_unet |
|
|
|
|
|
scheduler = CMStochasticIterativeScheduler( |
|
num_train_timesteps=40, |
|
sigma_min=0.002, |
|
sigma_max=80.0, |
|
) |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
} |
|
|
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
inputs = { |
|
"batch_size": 1, |
|
"num_inference_steps": None, |
|
"timesteps": [22, 0], |
|
"generator": generator, |
|
"output_type": "np", |
|
} |
|
|
|
return inputs |
|
|
|
def test_consistency_model_pipeline_multistep(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = ConsistencyModelPipeline(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_consistency_model_pipeline_multistep_class_cond(self): |
|
device = "cpu" |
|
components = self.get_dummy_components(class_cond=True) |
|
pipe = ConsistencyModelPipeline(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["class_labels"] = 0 |
|
image = pipe(**inputs).images |
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_consistency_model_pipeline_onestep(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = ConsistencyModelPipeline(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["num_inference_steps"] = 1 |
|
inputs["timesteps"] = None |
|
image = pipe(**inputs).images |
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_consistency_model_pipeline_onestep_class_cond(self): |
|
device = "cpu" |
|
components = self.get_dummy_components(class_cond=True) |
|
pipe = ConsistencyModelPipeline(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["num_inference_steps"] = 1 |
|
inputs["timesteps"] = None |
|
inputs["class_labels"] = 0 |
|
image = pipe(**inputs).images |
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class ConsistencyModelPipelineSlowTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, seed=0, get_fixed_latents=False, device="cpu", dtype=torch.float32, shape=(1, 3, 64, 64)): |
|
generator = torch.manual_seed(seed) |
|
|
|
inputs = { |
|
"num_inference_steps": None, |
|
"timesteps": [22, 0], |
|
"class_labels": 0, |
|
"generator": generator, |
|
"output_type": "np", |
|
} |
|
|
|
if get_fixed_latents: |
|
latents = self.get_fixed_latents(seed=seed, device=device, dtype=dtype, shape=shape) |
|
inputs["latents"] = latents |
|
|
|
return inputs |
|
|
|
def get_fixed_latents(self, seed=0, device="cpu", dtype=torch.float32, shape=(1, 3, 64, 64)): |
|
if type(device) == str: |
|
device = torch.device(device) |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
return latents |
|
|
|
def test_consistency_model_cd_multistep(self): |
|
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2") |
|
scheduler = CMStochasticIterativeScheduler( |
|
num_train_timesteps=40, |
|
sigma_min=0.002, |
|
sigma_max=80.0, |
|
) |
|
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler) |
|
pipe.to(torch_device=torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs() |
|
image = pipe(**inputs).images |
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
expected_slice = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 |
|
|
|
def test_consistency_model_cd_onestep(self): |
|
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2") |
|
scheduler = CMStochasticIterativeScheduler( |
|
num_train_timesteps=40, |
|
sigma_min=0.002, |
|
sigma_max=80.0, |
|
) |
|
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler) |
|
pipe.to(torch_device=torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs() |
|
inputs["num_inference_steps"] = 1 |
|
inputs["timesteps"] = None |
|
image = pipe(**inputs).images |
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
expected_slice = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 |
|
|
|
@require_torch_2 |
|
def test_consistency_model_cd_multistep_flash_attn(self): |
|
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2") |
|
scheduler = CMStochasticIterativeScheduler( |
|
num_train_timesteps=40, |
|
sigma_min=0.002, |
|
sigma_max=80.0, |
|
) |
|
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler) |
|
pipe.to(torch_device=torch_device, torch_dtype=torch.float16) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(get_fixed_latents=True, device=torch_device) |
|
|
|
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): |
|
image = pipe(**inputs).images |
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
expected_slice = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
@require_torch_2 |
|
def test_consistency_model_cd_onestep_flash_attn(self): |
|
unet = UNet2DModel.from_pretrained("diffusers/consistency_models", subfolder="diffusers_cd_imagenet64_l2") |
|
scheduler = CMStochasticIterativeScheduler( |
|
num_train_timesteps=40, |
|
sigma_min=0.002, |
|
sigma_max=80.0, |
|
) |
|
pipe = ConsistencyModelPipeline(unet=unet, scheduler=scheduler) |
|
pipe.to(torch_device=torch_device, torch_dtype=torch.float16) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(get_fixed_latents=True, device=torch_device) |
|
inputs["num_inference_steps"] = 1 |
|
inputs["timesteps"] = None |
|
|
|
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): |
|
image = pipe(**inputs).images |
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
expected_slice = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|