|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNet2DConditionModel |
|
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps |
|
|
|
from ..pipeline_params import ( |
|
IMAGE_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, |
|
) |
|
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class CycleDiffusionPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = CycleDiffusionPipeline |
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { |
|
"negative_prompt", |
|
"height", |
|
"width", |
|
"negative_prompt_embeds", |
|
} |
|
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} |
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"}) |
|
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
num_train_timesteps=1000, |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image / 2 + 0.5 |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "An astronaut riding an elephant", |
|
"source_prompt": "An astronaut riding a horse", |
|
"image": image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"eta": 0.1, |
|
"strength": 0.8, |
|
"guidance_scale": 3, |
|
"source_guidance_scale": 1, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_cycle(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = CycleDiffusionPipeline(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = pipe(**inputs) |
|
images = output.images |
|
|
|
image_slice = images[0, -3:, -3:, -1] |
|
|
|
assert images.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU") |
|
def test_stable_diffusion_cycle_fp16(self): |
|
components = self.get_dummy_components() |
|
for name, module in components.items(): |
|
if hasattr(module, "half"): |
|
components[name] = module.half() |
|
pipe = CycleDiffusionPipeline(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = pipe(**inputs) |
|
images = output.images |
|
|
|
image_slice = images[0, -3:, -3:, -1] |
|
|
|
assert images.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
@skip_mps |
|
def test_save_load_local(self): |
|
return super().test_save_load_local() |
|
|
|
@unittest.skip("non-deterministic pipeline") |
|
def test_inference_batch_single_identical(self): |
|
return super().test_inference_batch_single_identical() |
|
|
|
@skip_mps |
|
def test_dict_tuple_outputs_equivalent(self): |
|
return super().test_dict_tuple_outputs_equivalent() |
|
|
|
@skip_mps |
|
def test_save_load_optional_components(self): |
|
return super().test_save_load_optional_components() |
|
|
|
@skip_mps |
|
def test_attention_slicing_forward_pass(self): |
|
return super().test_attention_slicing_forward_pass() |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class CycleDiffusionPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_cycle_diffusion_pipeline_fp16(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/cycle-diffusion/black_colored_car.png" |
|
) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" |
|
) |
|
init_image = init_image.resize((512, 512)) |
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
pipe = CycleDiffusionPipeline.from_pretrained( |
|
model_id, scheduler=scheduler, safety_checker=None, torch_dtype=torch.float16, revision="fp16" |
|
) |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
source_prompt = "A black colored car" |
|
prompt = "A blue colored car" |
|
|
|
generator = torch.manual_seed(0) |
|
output = pipe( |
|
prompt=prompt, |
|
source_prompt=source_prompt, |
|
image=init_image, |
|
num_inference_steps=100, |
|
eta=0.1, |
|
strength=0.85, |
|
guidance_scale=3, |
|
source_guidance_scale=1, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
image = output.images |
|
|
|
|
|
assert np.abs(image - expected_image).max() < 5e-1 |
|
|
|
def test_cycle_diffusion_pipeline(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/cycle-diffusion/black_colored_car.png" |
|
) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" |
|
) |
|
init_image = init_image.resize((512, 512)) |
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
pipe = CycleDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, safety_checker=None) |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
source_prompt = "A black colored car" |
|
prompt = "A blue colored car" |
|
|
|
generator = torch.manual_seed(0) |
|
output = pipe( |
|
prompt=prompt, |
|
source_prompt=source_prompt, |
|
image=init_image, |
|
num_inference_steps=100, |
|
eta=0.1, |
|
strength=0.85, |
|
guidance_scale=3, |
|
source_guidance_scale=1, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
image = output.images |
|
|
|
assert np.abs(image - expected_image).max() < 2e-2 |
|
|