|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from diffusers import ( |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
OnnxStableDiffusionImg2ImgPipeline, |
|
PNDMScheduler, |
|
) |
|
from diffusers.utils import floats_tensor |
|
from diffusers.utils.testing_utils import ( |
|
is_onnx_available, |
|
load_image, |
|
nightly, |
|
require_onnxruntime, |
|
require_torch_gpu, |
|
) |
|
|
|
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin |
|
|
|
|
|
if is_onnx_available(): |
|
import onnxruntime as ort |
|
|
|
|
|
class OnnxStableDiffusionImg2ImgPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase): |
|
hub_checkpoint = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" |
|
|
|
def get_dummy_inputs(self, seed=0): |
|
image = floats_tensor((1, 3, 128, 128), rng=random.Random(seed)) |
|
generator = np.random.RandomState(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": image, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"strength": 0.75, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_pipeline_default_ddim(self): |
|
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
expected_slice = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) |
|
assert np.abs(image_slice - expected_slice).max() < 1e-1 |
|
|
|
def test_pipeline_pndm(self): |
|
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") |
|
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=True) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
expected_slice = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 |
|
|
|
def test_pipeline_lms(self): |
|
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
_ = pipe(**self.get_dummy_inputs()) |
|
|
|
inputs = self.get_dummy_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
expected_slice = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 |
|
|
|
def test_pipeline_euler(self): |
|
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") |
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
expected_slice = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 |
|
|
|
def test_pipeline_euler_ancestral(self): |
|
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
expected_slice = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 |
|
|
|
def test_pipeline_dpm_multistep(self): |
|
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
expected_slice = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 |
|
|
|
|
|
@nightly |
|
@require_onnxruntime |
|
@require_torch_gpu |
|
class OnnxStableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase): |
|
@property |
|
def gpu_provider(self): |
|
return ( |
|
"CUDAExecutionProvider", |
|
{ |
|
"gpu_mem_limit": "15000000000", |
|
"arena_extend_strategy": "kSameAsRequested", |
|
}, |
|
) |
|
|
|
@property |
|
def gpu_options(self): |
|
options = ort.SessionOptions() |
|
options.enable_mem_pattern = False |
|
return options |
|
|
|
def test_inference_default_pndm(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/img2img/sketch-mountains-input.jpg" |
|
) |
|
init_image = init_image.resize((768, 512)) |
|
|
|
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", |
|
revision="onnx", |
|
safety_checker=None, |
|
feature_extractor=None, |
|
provider=self.gpu_provider, |
|
sess_options=self.gpu_options, |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A fantasy landscape, trending on artstation" |
|
|
|
generator = np.random.RandomState(0) |
|
output = pipe( |
|
prompt=prompt, |
|
image=init_image, |
|
strength=0.75, |
|
guidance_scale=7.5, |
|
num_inference_steps=10, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
images = output.images |
|
image_slice = images[0, 255:258, 383:386, -1] |
|
|
|
assert images.shape == (1, 512, 768, 3) |
|
expected_slice = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) |
|
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 |
|
|
|
def test_inference_k_lms(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/img2img/sketch-mountains-input.jpg" |
|
) |
|
init_image = init_image.resize((768, 512)) |
|
lms_scheduler = LMSDiscreteScheduler.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx" |
|
) |
|
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", |
|
revision="onnx", |
|
scheduler=lms_scheduler, |
|
safety_checker=None, |
|
feature_extractor=None, |
|
provider=self.gpu_provider, |
|
sess_options=self.gpu_options, |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A fantasy landscape, trending on artstation" |
|
|
|
generator = np.random.RandomState(0) |
|
output = pipe( |
|
prompt=prompt, |
|
image=init_image, |
|
strength=0.75, |
|
guidance_scale=7.5, |
|
num_inference_steps=20, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
images = output.images |
|
image_slice = images[0, 255:258, 383:386, -1] |
|
|
|
assert images.shape == (1, 512, 768, 3) |
|
expected_slice = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) |
|
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 |
|
|