|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
PNDMScheduler, |
|
StableDiffusionAdapterPipeline, |
|
T2IAdapter, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu |
|
|
|
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class AdapterTests: |
|
pipeline_class = StableDiffusionAdapterPipeline |
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS |
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS |
|
|
|
def get_dummy_components(self, adapter_type): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
torch.manual_seed(0) |
|
adapter = T2IAdapter( |
|
in_channels=3, |
|
channels=[32, 64], |
|
num_res_blocks=2, |
|
downscale_factor=2, |
|
adapter_type=adapter_type, |
|
) |
|
|
|
components = { |
|
"adapter": adapter, |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3) |
|
|
|
|
|
class StableDiffusionFullAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase): |
|
def get_dummy_components(self): |
|
return super().get_dummy_components("full_adapter") |
|
|
|
def test_stable_diffusion_adapter_default_case(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionAdapterPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4858, 0.5500, 0.4278, 0.4669, 0.6184, 0.4322, 0.5010, 0.5033, 0.4746]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 |
|
|
|
|
|
class StableDiffusionLightAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase): |
|
def get_dummy_components(self): |
|
return super().get_dummy_components("light_adapter") |
|
|
|
def test_stable_diffusion_adapter_default_case(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionAdapterPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4965, 0.5548, 0.4330, 0.4771, 0.6226, 0.4382, 0.5037, 0.5071, 0.4782]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionAdapterPipelineSlowTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_stable_diffusion_adapter(self): |
|
test_cases = [ |
|
( |
|
"TencentARC/t2iadapter_color_sd14v1", |
|
"CompVis/stable-diffusion-v1-4", |
|
"snail", |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/color.png", |
|
3, |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_color_sd14v1.npy", |
|
), |
|
( |
|
"TencentARC/t2iadapter_depth_sd14v1", |
|
"CompVis/stable-diffusion-v1-4", |
|
"desk", |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/desk_depth.png", |
|
3, |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_depth_sd14v1.npy", |
|
), |
|
( |
|
"TencentARC/t2iadapter_depth_sd15v2", |
|
"runwayml/stable-diffusion-v1-5", |
|
"desk", |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/desk_depth.png", |
|
3, |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_depth_sd15v2.npy", |
|
), |
|
( |
|
"TencentARC/t2iadapter_keypose_sd14v1", |
|
"CompVis/stable-diffusion-v1-4", |
|
"person", |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/person_keypose.png", |
|
3, |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_keypose_sd14v1.npy", |
|
), |
|
( |
|
"TencentARC/t2iadapter_openpose_sd14v1", |
|
"CompVis/stable-diffusion-v1-4", |
|
"person", |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/iron_man_pose.png", |
|
3, |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_openpose_sd14v1.npy", |
|
), |
|
( |
|
"TencentARC/t2iadapter_seg_sd14v1", |
|
"CompVis/stable-diffusion-v1-4", |
|
"motorcycle", |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motor.png", |
|
3, |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_seg_sd14v1.npy", |
|
), |
|
( |
|
"TencentARC/t2iadapter_zoedepth_sd15v1", |
|
"runwayml/stable-diffusion-v1-5", |
|
"motorcycle", |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motorcycle.png", |
|
3, |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_zoedepth_sd15v1.npy", |
|
), |
|
( |
|
"TencentARC/t2iadapter_canny_sd14v1", |
|
"CompVis/stable-diffusion-v1-4", |
|
"toy", |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png", |
|
1, |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_canny_sd14v1.npy", |
|
), |
|
( |
|
"TencentARC/t2iadapter_canny_sd15v2", |
|
"runwayml/stable-diffusion-v1-5", |
|
"toy", |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png", |
|
1, |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_canny_sd15v2.npy", |
|
), |
|
( |
|
"TencentARC/t2iadapter_sketch_sd14v1", |
|
"CompVis/stable-diffusion-v1-4", |
|
"cat", |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/edge.png", |
|
1, |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_sketch_sd14v1.npy", |
|
), |
|
( |
|
"TencentARC/t2iadapter_sketch_sd15v2", |
|
"runwayml/stable-diffusion-v1-5", |
|
"cat", |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/edge.png", |
|
1, |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_sketch_sd15v2.npy", |
|
), |
|
] |
|
|
|
for adapter_model, sd_model, prompt, image_url, input_channels, out_url in test_cases: |
|
image = load_image(image_url) |
|
expected_out = load_numpy(out_url) |
|
|
|
if input_channels == 1: |
|
image = image.convert("L") |
|
|
|
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16) |
|
|
|
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
|
|
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images |
|
|
|
self.assertTrue(np.allclose(out, expected_out)) |
|
|
|
def test_stable_diffusion_adapter_pipeline_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_seg_sd14v1") |
|
pipe = StableDiffusionAdapterPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", adapter=adapter, safety_checker=None |
|
) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motor.png" |
|
) |
|
|
|
pipe(prompt="foo", image=image, num_inference_steps=2) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
assert mem_bytes < 5 * 10**9 |
|
|