diffusers / tests /pipelines /stable_diffusion /test_stable_diffusion_adapter.py
Aminrabi's picture
End of training
c0af20c
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
PNDMScheduler,
StableDiffusionAdapterPipeline,
T2IAdapter,
UNet2DConditionModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class AdapterTests:
pipeline_class = StableDiffusionAdapterPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
def get_dummy_components(self, adapter_type):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
torch.manual_seed(0)
adapter = T2IAdapter(
in_channels=3,
channels=[32, 64],
num_res_blocks=2,
downscale_factor=2,
adapter_type=adapter_type,
)
components = {
"adapter": adapter,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_attention_slicing_forward_pass(self):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
class StableDiffusionFullAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase):
def get_dummy_components(self):
return super().get_dummy_components("full_adapter")
def test_stable_diffusion_adapter_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionAdapterPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4858, 0.5500, 0.4278, 0.4669, 0.6184, 0.4322, 0.5010, 0.5033, 0.4746])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
class StableDiffusionLightAdapterPipelineFastTests(AdapterTests, PipelineTesterMixin, unittest.TestCase):
def get_dummy_components(self):
return super().get_dummy_components("light_adapter")
def test_stable_diffusion_adapter_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionAdapterPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4965, 0.5548, 0.4330, 0.4771, 0.6226, 0.4382, 0.5037, 0.5071, 0.4782])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
@slow
@require_torch_gpu
class StableDiffusionAdapterPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_adapter(self):
test_cases = [
(
"TencentARC/t2iadapter_color_sd14v1",
"CompVis/stable-diffusion-v1-4",
"snail",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/color.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_color_sd14v1.npy",
),
(
"TencentARC/t2iadapter_depth_sd14v1",
"CompVis/stable-diffusion-v1-4",
"desk",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/desk_depth.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_depth_sd14v1.npy",
),
(
"TencentARC/t2iadapter_depth_sd15v2",
"runwayml/stable-diffusion-v1-5",
"desk",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/desk_depth.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_depth_sd15v2.npy",
),
(
"TencentARC/t2iadapter_keypose_sd14v1",
"CompVis/stable-diffusion-v1-4",
"person",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/person_keypose.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_keypose_sd14v1.npy",
),
(
"TencentARC/t2iadapter_openpose_sd14v1",
"CompVis/stable-diffusion-v1-4",
"person",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/iron_man_pose.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_openpose_sd14v1.npy",
),
(
"TencentARC/t2iadapter_seg_sd14v1",
"CompVis/stable-diffusion-v1-4",
"motorcycle",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motor.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_seg_sd14v1.npy",
),
(
"TencentARC/t2iadapter_zoedepth_sd15v1",
"runwayml/stable-diffusion-v1-5",
"motorcycle",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motorcycle.png",
3,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_zoedepth_sd15v1.npy",
),
(
"TencentARC/t2iadapter_canny_sd14v1",
"CompVis/stable-diffusion-v1-4",
"toy",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png",
1,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_canny_sd14v1.npy",
),
(
"TencentARC/t2iadapter_canny_sd15v2",
"runwayml/stable-diffusion-v1-5",
"toy",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png",
1,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_canny_sd15v2.npy",
),
(
"TencentARC/t2iadapter_sketch_sd14v1",
"CompVis/stable-diffusion-v1-4",
"cat",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/edge.png",
1,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_sketch_sd14v1.npy",
),
(
"TencentARC/t2iadapter_sketch_sd15v2",
"runwayml/stable-diffusion-v1-5",
"cat",
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/edge.png",
1,
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/t2iadapter_sketch_sd15v2.npy",
),
]
for adapter_model, sd_model, prompt, image_url, input_channels, out_url in test_cases:
image = load_image(image_url)
expected_out = load_numpy(out_url)
if input_channels == 1:
image = image.convert("L")
adapter = T2IAdapter.from_pretrained(adapter_model, torch_dtype=torch.float16)
pipe = StableDiffusionAdapterPipeline.from_pretrained(sd_model, adapter=adapter, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
generator = torch.Generator(device="cpu").manual_seed(0)
out = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=2, output_type="np").images
self.assertTrue(np.allclose(out, expected_out))
def test_stable_diffusion_adapter_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_seg_sd14v1")
pipe = StableDiffusionAdapterPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", adapter=adapter, safety_checker=None
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/motor.png"
)
pipe(prompt="foo", image=image, num_inference_steps=2)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 5 * 10**9