|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import traceback |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AsymmetricAutoencoderKL, |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionInpaintPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.models.attention_processor import AttnProcessor |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image |
|
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
require_torch_2, |
|
require_torch_gpu, |
|
run_test_in_subprocess, |
|
) |
|
|
|
from ...models.test_models_unet_2d_condition import create_lora_layers |
|
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS |
|
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
|
|
def _test_inpaint_compile(in_queue, out_queue, timeout): |
|
error = None |
|
try: |
|
inputs = in_queue.get(timeout=timeout) |
|
torch_device = inputs.pop("torch_device") |
|
seed = inputs.pop("seed") |
|
inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed) |
|
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipe.unet.to(memory_format=torch.channels_last) |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
|
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 3e-3 |
|
except Exception: |
|
error = f"{traceback.format_exc()}" |
|
|
|
results = {"error": error} |
|
out_queue.put(results, timeout=timeout) |
|
out_queue.join() |
|
|
|
|
|
class StableDiffusionInpaintPipelineFastTests( |
|
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase |
|
): |
|
pipeline_class = StableDiffusionInpaintPipeline |
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS |
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS |
|
image_params = frozenset([]) |
|
|
|
image_latents_params = frozenset([]) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=9, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image.cpu().permute(0, 2, 3, 1)[0] |
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) |
|
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64)) |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_inpaint(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4723, 0.5731, 0.3939, 0.5441, 0.5922, 0.4392, 0.5059, 0.4651, 0.4474]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_image_tensor(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
out_pil = output.images |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0) |
|
inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0) |
|
output = sd_pipe(**inputs) |
|
out_tensor = output.images |
|
|
|
assert out_pil.shape == (1, 64, 64, 3) |
|
assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2 |
|
|
|
def test_stable_diffusion_inpaint_lora(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
|
|
lora_attn_procs = create_lora_layers(sd_pipe.unet) |
|
sd_pipe.unet.set_attn_processor(lora_attn_procs) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
|
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0}) |
|
image = output.images |
|
image_slice_1 = image[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5}) |
|
image = output.images |
|
image_slice_2 = image[0, -3:, -3:, -1] |
|
|
|
assert np.abs(image_slice - image_slice_1).max() < 1e-2 |
|
assert np.abs(image_slice - image_slice_2).max() > 1e-2 |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3) |
|
|
|
def test_stable_diffusion_inpaint_strength_zero_test(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
|
|
|
|
inputs["strength"] = 0.01 |
|
with self.assertRaises(ValueError): |
|
sd_pipe(**inputs).images |
|
|
|
|
|
class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests): |
|
pipeline_class = StableDiffusionInpaintPipeline |
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS |
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS |
|
image_params = frozenset([]) |
|
|
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def test_stable_diffusion_inpaint(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4925, 0.4967, 0.4100, 0.5234, 0.5322, 0.4532, 0.5805, 0.5877, 0.4151]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
@unittest.skip("skipped here because area stays unchanged due to mask") |
|
def test_stable_diffusion_inpaint_lora(self): |
|
... |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_image.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_mask.png" |
|
) |
|
inputs = { |
|
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_inpaint_ddim(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 6e-4 |
|
|
|
def test_stable_diffusion_inpaint_fp16(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.1350, 0.1123, 0.1350, 0.1641, 0.1328, 0.1230, 0.1289, 0.1531, 0.1687]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-2 |
|
|
|
def test_stable_diffusion_inpaint_pndm(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-3 |
|
|
|
def test_stable_diffusion_inpaint_k_lms(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 6e-3 |
|
|
|
def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
_ = pipe(**inputs) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 2.2 * 10**9 |
|
|
|
@require_torch_2 |
|
def test_inpaint_compile(self): |
|
seed = 0 |
|
inputs = self.get_inputs(torch_device, seed=seed) |
|
|
|
del inputs["generator"] |
|
inputs["torch_device"] = torch_device |
|
inputs["seed"] = seed |
|
run_test_in_subprocess(test_case=self, target_func=_test_inpaint_compile, inputs=inputs) |
|
|
|
def test_stable_diffusion_inpaint_pil_input_resolution_test(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
|
|
inputs["image"] = inputs["image"].resize((127, 127)) |
|
inputs["mask_image"] = inputs["mask_image"].resize((127, 127)) |
|
inputs["height"] = 128 |
|
inputs["width"] = 128 |
|
image = pipe(**inputs).images |
|
|
|
assert image.shape == (1, inputs["height"], inputs["width"], 3) |
|
|
|
def test_stable_diffusion_inpaint_strength_test(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
|
|
inputs["strength"] = 0.75 |
|
image = pipe(**inputs).images |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
expected_slice = np.array([0.0021, 0.2350, 0.3712, 0.0575, 0.2485, 0.3451, 0.1857, 0.3156, 0.3943]) |
|
assert np.abs(expected_slice - image_slice).max() < 3e-3 |
|
|
|
def test_stable_diffusion_simple_inpaint_ddim(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.5157, 0.6858, 0.6873, 0.4619, 0.6416, 0.6898, 0.3702, 0.5960, 0.6935]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 6e-4 |
|
|
|
def test_download_local(self): |
|
filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt") |
|
|
|
pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16) |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to("cuda") |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 1 |
|
image_out = pipe(**inputs).images[0] |
|
|
|
assert image_out.shape == (512, 512, 3) |
|
|
|
def test_download_ckpt_diff_format_is_same(self): |
|
ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt" |
|
|
|
pipe = StableDiffusionInpaintPipeline.from_single_file(ckpt_path) |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.unet.set_attn_processor(AttnProcessor()) |
|
pipe.to("cuda") |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 5 |
|
image_ckpt = pipe(**inputs).images[0] |
|
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.unet.set_attn_processor(AttnProcessor()) |
|
pipe.to("cuda") |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 5 |
|
image = pipe(**inputs).images[0] |
|
|
|
assert np.max(np.abs(image - image_ckpt)) < 1e-4 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionInpaintPipelineAsymmetricAutoencoderKLSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_image.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_mask.png" |
|
) |
|
inputs = { |
|
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_inpaint_ddim(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.vae = vae |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0521, 0.0606, 0.0602, 0.0446, 0.0495, 0.0434, 0.1175, 0.1290, 0.1431]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 6e-4 |
|
|
|
def test_stable_diffusion_inpaint_fp16(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained( |
|
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16 |
|
) |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None |
|
) |
|
pipe.vae = vae |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.1343, 0.1406, 0.1440, 0.1504, 0.1729, 0.0989, 0.1807, 0.2822, 0.1179]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-2 |
|
|
|
def test_stable_diffusion_inpaint_pndm(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.vae = vae |
|
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0976, 0.1071, 0.1119, 0.1363, 0.1260, 0.1150, 0.3745, 0.3586, 0.3340]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-3 |
|
|
|
def test_stable_diffusion_inpaint_k_lms(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.vae = vae |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.8909, 0.8620, 0.9024, 0.8501, 0.8558, 0.9074, 0.8790, 0.7540, 0.9003]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 6e-3 |
|
|
|
def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
vae = AsymmetricAutoencoderKL.from_pretrained( |
|
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16 |
|
) |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.vae = vae |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
_ = pipe(**inputs) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 2.45 * 10**9 |
|
|
|
@require_torch_2 |
|
def test_inpaint_compile(self): |
|
pass |
|
|
|
def test_stable_diffusion_inpaint_pil_input_resolution_test(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained( |
|
"cross-attention/asymmetric-autoencoder-kl-x-1-5", |
|
) |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.vae = vae |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
|
|
inputs["image"] = inputs["image"].resize((127, 127)) |
|
inputs["mask_image"] = inputs["mask_image"].resize((127, 127)) |
|
inputs["height"] = 128 |
|
inputs["width"] = 128 |
|
image = pipe(**inputs).images |
|
|
|
assert image.shape == (1, inputs["height"], inputs["width"], 3) |
|
|
|
def test_stable_diffusion_inpaint_strength_test(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.vae = vae |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
|
|
inputs["strength"] = 0.75 |
|
image = pipe(**inputs).images |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
expected_slice = np.array([0.2458, 0.2576, 0.3124, 0.2679, 0.2669, 0.2796, 0.2872, 0.2975, 0.2661]) |
|
assert np.abs(expected_slice - image_slice).max() < 3e-3 |
|
|
|
def test_stable_diffusion_simple_inpaint_ddim(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) |
|
pipe.vae = vae |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.3312, 0.4052, 0.4103, 0.4153, 0.4347, 0.4154, 0.4932, 0.4920, 0.4431]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 6e-4 |
|
|
|
def test_download_local(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained( |
|
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16 |
|
) |
|
filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt") |
|
|
|
pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16) |
|
pipe.vae = vae |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to("cuda") |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 1 |
|
image_out = pipe(**inputs).images[0] |
|
|
|
assert image_out.shape == (512, 512, 3) |
|
|
|
def test_download_ckpt_diff_format_is_same(self): |
|
pass |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_image.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_mask.png" |
|
) |
|
inputs = { |
|
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 50, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_inpaint_ddim(self): |
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_inpaint_pndm(self): |
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") |
|
sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_inpaint_lms(self): |
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_inpaint_dpm(self): |
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") |
|
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 30 |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
|
|
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase): |
|
def test_pil_inputs(self): |
|
height, width = 32, 32 |
|
im = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8) |
|
im = Image.fromarray(im) |
|
mask = np.random.randint(0, 255, (height, width), dtype=np.uint8) > 127.5 |
|
mask = Image.fromarray((mask * 255).astype(np.uint8)) |
|
|
|
t_mask, t_masked, t_image = prepare_mask_and_masked_image(im, mask, height, width, return_image=True) |
|
|
|
self.assertTrue(isinstance(t_mask, torch.Tensor)) |
|
self.assertTrue(isinstance(t_masked, torch.Tensor)) |
|
self.assertTrue(isinstance(t_image, torch.Tensor)) |
|
|
|
self.assertEqual(t_mask.ndim, 4) |
|
self.assertEqual(t_masked.ndim, 4) |
|
self.assertEqual(t_image.ndim, 4) |
|
|
|
self.assertEqual(t_mask.shape, (1, 1, height, width)) |
|
self.assertEqual(t_masked.shape, (1, 3, height, width)) |
|
self.assertEqual(t_image.shape, (1, 3, height, width)) |
|
|
|
self.assertTrue(t_mask.dtype == torch.float32) |
|
self.assertTrue(t_masked.dtype == torch.float32) |
|
self.assertTrue(t_image.dtype == torch.float32) |
|
|
|
self.assertTrue(t_mask.min() >= 0.0) |
|
self.assertTrue(t_mask.max() <= 1.0) |
|
self.assertTrue(t_masked.min() >= -1.0) |
|
self.assertTrue(t_masked.min() <= 1.0) |
|
self.assertTrue(t_image.min() >= -1.0) |
|
self.assertTrue(t_image.min() >= -1.0) |
|
|
|
self.assertTrue(t_mask.sum() > 0.0) |
|
|
|
def test_np_inputs(self): |
|
height, width = 32, 32 |
|
|
|
im_np = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8) |
|
im_pil = Image.fromarray(im_np) |
|
mask_np = ( |
|
np.random.randint( |
|
0, |
|
255, |
|
( |
|
height, |
|
width, |
|
), |
|
dtype=np.uint8, |
|
) |
|
> 127.5 |
|
) |
|
mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8)) |
|
|
|
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( |
|
im_np, mask_np, height, width, return_image=True |
|
) |
|
t_mask_pil, t_masked_pil, t_image_pil = prepare_mask_and_masked_image( |
|
im_pil, mask_pil, height, width, return_image=True |
|
) |
|
|
|
self.assertTrue((t_mask_np == t_mask_pil).all()) |
|
self.assertTrue((t_masked_np == t_masked_pil).all()) |
|
self.assertTrue((t_image_np == t_image_pil).all()) |
|
|
|
def test_torch_3D_2D_inputs(self): |
|
height, width = 32, 32 |
|
|
|
im_tensor = torch.randint( |
|
0, |
|
255, |
|
( |
|
3, |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
mask_tensor = ( |
|
torch.randint( |
|
0, |
|
255, |
|
( |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
> 127.5 |
|
) |
|
im_np = im_tensor.numpy().transpose(1, 2, 0) |
|
mask_np = mask_tensor.numpy() |
|
|
|
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( |
|
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True |
|
) |
|
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( |
|
im_np, mask_np, height, width, return_image=True |
|
) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
self.assertTrue((t_image_tensor == t_image_np).all()) |
|
|
|
def test_torch_3D_3D_inputs(self): |
|
height, width = 32, 32 |
|
|
|
im_tensor = torch.randint( |
|
0, |
|
255, |
|
( |
|
3, |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
mask_tensor = ( |
|
torch.randint( |
|
0, |
|
255, |
|
( |
|
1, |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
> 127.5 |
|
) |
|
im_np = im_tensor.numpy().transpose(1, 2, 0) |
|
mask_np = mask_tensor.numpy()[0] |
|
|
|
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( |
|
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True |
|
) |
|
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( |
|
im_np, mask_np, height, width, return_image=True |
|
) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
self.assertTrue((t_image_tensor == t_image_np).all()) |
|
|
|
def test_torch_4D_2D_inputs(self): |
|
height, width = 32, 32 |
|
|
|
im_tensor = torch.randint( |
|
0, |
|
255, |
|
( |
|
1, |
|
3, |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
mask_tensor = ( |
|
torch.randint( |
|
0, |
|
255, |
|
( |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
> 127.5 |
|
) |
|
im_np = im_tensor.numpy()[0].transpose(1, 2, 0) |
|
mask_np = mask_tensor.numpy() |
|
|
|
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( |
|
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True |
|
) |
|
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( |
|
im_np, mask_np, height, width, return_image=True |
|
) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
self.assertTrue((t_image_tensor == t_image_np).all()) |
|
|
|
def test_torch_4D_3D_inputs(self): |
|
height, width = 32, 32 |
|
|
|
im_tensor = torch.randint( |
|
0, |
|
255, |
|
( |
|
1, |
|
3, |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
mask_tensor = ( |
|
torch.randint( |
|
0, |
|
255, |
|
( |
|
1, |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
> 127.5 |
|
) |
|
im_np = im_tensor.numpy()[0].transpose(1, 2, 0) |
|
mask_np = mask_tensor.numpy()[0] |
|
|
|
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( |
|
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True |
|
) |
|
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( |
|
im_np, mask_np, height, width, return_image=True |
|
) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
self.assertTrue((t_image_tensor == t_image_np).all()) |
|
|
|
def test_torch_4D_4D_inputs(self): |
|
height, width = 32, 32 |
|
|
|
im_tensor = torch.randint( |
|
0, |
|
255, |
|
( |
|
1, |
|
3, |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
mask_tensor = ( |
|
torch.randint( |
|
0, |
|
255, |
|
( |
|
1, |
|
1, |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
> 127.5 |
|
) |
|
im_np = im_tensor.numpy()[0].transpose(1, 2, 0) |
|
mask_np = mask_tensor.numpy()[0][0] |
|
|
|
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( |
|
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True |
|
) |
|
t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image( |
|
im_np, mask_np, height, width, return_image=True |
|
) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
self.assertTrue((t_image_tensor == t_image_np).all()) |
|
|
|
def test_torch_batch_4D_3D(self): |
|
height, width = 32, 32 |
|
|
|
im_tensor = torch.randint( |
|
0, |
|
255, |
|
( |
|
2, |
|
3, |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
mask_tensor = ( |
|
torch.randint( |
|
0, |
|
255, |
|
( |
|
2, |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
> 127.5 |
|
) |
|
|
|
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor] |
|
mask_nps = [mask.numpy() for mask in mask_tensor] |
|
|
|
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( |
|
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True |
|
) |
|
nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)] |
|
t_mask_np = torch.cat([n[0] for n in nps]) |
|
t_masked_np = torch.cat([n[1] for n in nps]) |
|
t_image_np = torch.cat([n[2] for n in nps]) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
self.assertTrue((t_image_tensor == t_image_np).all()) |
|
|
|
def test_torch_batch_4D_4D(self): |
|
height, width = 32, 32 |
|
|
|
im_tensor = torch.randint( |
|
0, |
|
255, |
|
( |
|
2, |
|
3, |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
mask_tensor = ( |
|
torch.randint( |
|
0, |
|
255, |
|
( |
|
2, |
|
1, |
|
height, |
|
width, |
|
), |
|
dtype=torch.uint8, |
|
) |
|
> 127.5 |
|
) |
|
|
|
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor] |
|
mask_nps = [mask.numpy()[0] for mask in mask_tensor] |
|
|
|
t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image( |
|
im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True |
|
) |
|
nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)] |
|
t_mask_np = torch.cat([n[0] for n in nps]) |
|
t_masked_np = torch.cat([n[1] for n in nps]) |
|
t_image_np = torch.cat([n[2] for n in nps]) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
self.assertTrue((t_image_tensor == t_image_np).all()) |
|
|
|
def test_shape_mismatch(self): |
|
height, width = 32, 32 |
|
|
|
|
|
with self.assertRaises(AssertionError): |
|
prepare_mask_and_masked_image( |
|
torch.randn( |
|
3, |
|
height, |
|
width, |
|
), |
|
torch.randn(64, 64), |
|
height, |
|
width, |
|
return_image=True, |
|
) |
|
|
|
with self.assertRaises(AssertionError): |
|
prepare_mask_and_masked_image( |
|
torch.randn( |
|
2, |
|
3, |
|
height, |
|
width, |
|
), |
|
torch.randn(4, 64, 64), |
|
height, |
|
width, |
|
return_image=True, |
|
) |
|
|
|
with self.assertRaises(AssertionError): |
|
prepare_mask_and_masked_image( |
|
torch.randn( |
|
2, |
|
3, |
|
height, |
|
width, |
|
), |
|
torch.randn(4, 1, 64, 64), |
|
height, |
|
width, |
|
return_image=True, |
|
) |
|
|
|
def test_type_mismatch(self): |
|
height, width = 32, 32 |
|
|
|
|
|
with self.assertRaises(TypeError): |
|
prepare_mask_and_masked_image( |
|
torch.rand( |
|
3, |
|
height, |
|
width, |
|
), |
|
torch.rand( |
|
3, |
|
height, |
|
width, |
|
).numpy(), |
|
height, |
|
width, |
|
return_image=True, |
|
) |
|
|
|
with self.assertRaises(TypeError): |
|
prepare_mask_and_masked_image( |
|
torch.rand( |
|
3, |
|
height, |
|
width, |
|
).numpy(), |
|
torch.rand( |
|
3, |
|
height, |
|
width, |
|
), |
|
height, |
|
width, |
|
return_image=True, |
|
) |
|
|
|
def test_channels_first(self): |
|
height, width = 32, 32 |
|
|
|
|
|
with self.assertRaises(AssertionError): |
|
prepare_mask_and_masked_image( |
|
torch.rand(height, width, 3), |
|
torch.rand( |
|
3, |
|
height, |
|
width, |
|
), |
|
height, |
|
width, |
|
return_image=True, |
|
) |
|
|
|
def test_tensor_range(self): |
|
height, width = 32, 32 |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
prepare_mask_and_masked_image( |
|
torch.ones( |
|
3, |
|
height, |
|
width, |
|
) |
|
* 2, |
|
torch.rand( |
|
height, |
|
width, |
|
), |
|
height, |
|
width, |
|
return_image=True, |
|
) |
|
|
|
with self.assertRaises(ValueError): |
|
prepare_mask_and_masked_image( |
|
torch.ones( |
|
3, |
|
height, |
|
width, |
|
) |
|
* (-2), |
|
torch.rand( |
|
height, |
|
width, |
|
), |
|
height, |
|
width, |
|
return_image=True, |
|
) |
|
|
|
with self.assertRaises(ValueError): |
|
prepare_mask_and_masked_image( |
|
torch.rand( |
|
3, |
|
height, |
|
width, |
|
), |
|
torch.ones( |
|
height, |
|
width, |
|
) |
|
* 2, |
|
height, |
|
width, |
|
return_image=True, |
|
) |
|
|
|
with self.assertRaises(ValueError): |
|
prepare_mask_and_masked_image( |
|
torch.rand( |
|
3, |
|
height, |
|
width, |
|
), |
|
torch.ones( |
|
height, |
|
width, |
|
) |
|
* -1, |
|
height, |
|
width, |
|
return_image=True, |
|
) |
|
|