|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionInpaintPipelineLegacy, |
|
UNet2DConditionModel, |
|
UNet2DModel, |
|
VQModel, |
|
) |
|
from diffusers.utils import floats_tensor, load_image, nightly, slow, torch_device |
|
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, preprocess_image, require_torch_gpu |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusionInpaintLegacyPipelineFastTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@property |
|
def dummy_image(self): |
|
batch_size = 1 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) |
|
return image |
|
|
|
@property |
|
def dummy_uncond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"), |
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"), |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_cond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_cond_unet_inpaint(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=9, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vq_model(self): |
|
torch.manual_seed(0) |
|
model = VQModel( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=3, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vae(self): |
|
torch.manual_seed(0) |
|
model = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModel(config) |
|
|
|
@property |
|
def dummy_extractor(self): |
|
def extract(*args, **kwargs): |
|
class Out: |
|
def __init__(self): |
|
self.pixel_values = torch.ones([0]) |
|
|
|
def to(self, device): |
|
self.pixel_values.to(device) |
|
return self |
|
|
|
return Out() |
|
|
|
return extract |
|
|
|
def test_stable_diffusion_inpaint_legacy(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] |
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB") |
|
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32)) |
|
|
|
|
|
sd_pipe = StableDiffusionInpaintPipelineLegacy( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
image=init_image, |
|
mask_image=mask_image, |
|
) |
|
|
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
image=init_image, |
|
mask_image=mask_image, |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4941, 0.5396, 0.4689, 0.6338, 0.5392, 0.4094, 0.5477, 0.5904, 0.5165]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_legacy_batched(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] |
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB") |
|
init_images_tens = preprocess_image(init_image, batch_size=2) |
|
init_masks_tens = init_images_tens + 4 |
|
|
|
|
|
sd_pipe = StableDiffusionInpaintPipelineLegacy( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
images = sd_pipe( |
|
[prompt] * 2, |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
image=init_images_tens, |
|
mask_image=init_masks_tens, |
|
).images |
|
|
|
assert images.shape == (2, 32, 32, 3) |
|
|
|
image_slice_0 = images[0, -3:, -3:, -1].flatten() |
|
image_slice_1 = images[1, -3:, -3:, -1].flatten() |
|
|
|
expected_slice_0 = np.array([0.4697, 0.3770, 0.4096, 0.4653, 0.4497, 0.4183, 0.3950, 0.4668, 0.4672]) |
|
expected_slice_1 = np.array([0.4105, 0.4987, 0.5771, 0.4921, 0.4237, 0.5684, 0.5496, 0.4645, 0.5272]) |
|
|
|
assert np.abs(expected_slice_0 - image_slice_0).max() < 1e-2 |
|
assert np.abs(expected_slice_1 - image_slice_1).max() < 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_legacy_negative_prompt(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] |
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB") |
|
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32)) |
|
|
|
|
|
sd_pipe = StableDiffusionInpaintPipelineLegacy( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
negative_prompt = "french fries" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
prompt, |
|
negative_prompt=negative_prompt, |
|
generator=generator, |
|
guidance_scale=6.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
image=init_image, |
|
mask_image=mask_image, |
|
) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4941, 0.5396, 0.4689, 0.6338, 0.5392, 0.4094, 0.5477, 0.5904, 0.5165]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_legacy_num_images_per_prompt(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
vae = self.dummy_vae |
|
bert = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] |
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB") |
|
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32)) |
|
|
|
|
|
sd_pipe = StableDiffusionInpaintPipelineLegacy( |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=bert, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=self.dummy_extractor, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
|
|
|
|
images = sd_pipe( |
|
prompt, |
|
num_inference_steps=2, |
|
output_type="np", |
|
image=init_image, |
|
mask_image=mask_image, |
|
).images |
|
|
|
assert images.shape == (1, 32, 32, 3) |
|
|
|
|
|
batch_size = 2 |
|
images = sd_pipe( |
|
[prompt] * batch_size, |
|
num_inference_steps=2, |
|
output_type="np", |
|
image=init_image, |
|
mask_image=mask_image, |
|
).images |
|
|
|
assert images.shape == (batch_size, 32, 32, 3) |
|
|
|
|
|
num_images_per_prompt = 2 |
|
images = sd_pipe( |
|
prompt, |
|
num_inference_steps=2, |
|
output_type="np", |
|
image=init_image, |
|
mask_image=mask_image, |
|
num_images_per_prompt=num_images_per_prompt, |
|
).images |
|
|
|
assert images.shape == (num_images_per_prompt, 32, 32, 3) |
|
|
|
|
|
batch_size = 2 |
|
images = sd_pipe( |
|
[prompt] * batch_size, |
|
num_inference_steps=2, |
|
output_type="np", |
|
image=init_image, |
|
mask_image=mask_image, |
|
num_images_per_prompt=num_images_per_prompt, |
|
).images |
|
|
|
assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionInpaintLegacyPipelineSlowTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, generator_device="cpu", seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_image.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_mask.png" |
|
) |
|
inputs = { |
|
"prompt": "A red cat sitting on a park bench", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"strength": 0.75, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_inpaint_legacy_pndm(self): |
|
pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", safety_checker=None |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.5665, 0.6117, 0.6430, 0.4057, 0.4594, 0.5658, 0.1596, 0.3106, 0.4305]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 3e-3 |
|
|
|
def test_stable_diffusion_inpaint_legacy_batched(self): |
|
pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", safety_checker=None |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs() |
|
inputs["prompt"] = [inputs["prompt"]] * 2 |
|
inputs["image"] = preprocess_image(inputs["image"], batch_size=2) |
|
|
|
mask = inputs["mask_image"].convert("L") |
|
mask = np.array(mask).astype(np.float32) / 255.0 |
|
mask = torch.from_numpy(1 - mask) |
|
masks = torch.vstack([mask[None][None]] * 2) |
|
inputs["mask_image"] = masks |
|
|
|
image = pipe(**inputs).images |
|
assert image.shape == (2, 512, 512, 3) |
|
|
|
image_slice_0 = image[0, 253:256, 253:256, -1].flatten() |
|
image_slice_1 = image[1, 253:256, 253:256, -1].flatten() |
|
|
|
expected_slice_0 = np.array( |
|
[0.52093095, 0.4176447, 0.32752383, 0.6175223, 0.50563973, 0.36470804, 0.65460044, 0.5775188, 0.44332123] |
|
) |
|
expected_slice_1 = np.array( |
|
[0.3592432, 0.4233033, 0.3914635, 0.31014425, 0.3702293, 0.39412856, 0.17526966, 0.2642669, 0.37480092] |
|
) |
|
|
|
assert np.abs(expected_slice_0 - image_slice_0).max() < 3e-3 |
|
assert np.abs(expected_slice_1 - image_slice_1).max() < 3e-3 |
|
|
|
def test_stable_diffusion_inpaint_legacy_k_lms(self): |
|
pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", safety_checker=None |
|
) |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.4534, 0.4467, 0.4329, 0.4329, 0.4339, 0.4220, 0.4244, 0.4332, 0.4426]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 3e-3 |
|
|
|
def test_stable_diffusion_inpaint_legacy_intermediate_state(self): |
|
number_of_steps = 0 |
|
|
|
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: |
|
callback_fn.has_been_called = True |
|
nonlocal number_of_steps |
|
number_of_steps += 1 |
|
if step == 1: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.5977, 1.5449, 1.0586, -0.3250, 0.7383, -0.0862, 0.4631, -0.2571, -1.1289]) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 |
|
elif step == 2: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.5190, 1.1621, 0.6885, 0.2424, 0.3337, -0.1617, 0.6914, -0.1957, -0.5474]) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
callback_fn.has_been_called = False |
|
|
|
pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs() |
|
pipe(**inputs, callback=callback_fn, callback_steps=1) |
|
assert callback_fn.has_been_called |
|
assert number_of_steps == 2 |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableDiffusionInpaintLegacyPipelineNightlyTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_image.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_mask.png" |
|
) |
|
inputs = { |
|
"prompt": "A red cat sitting on a park bench", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 50, |
|
"strength": 0.75, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_inpaint_pndm(self): |
|
sd_pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint_legacy/stable_diffusion_1_5_pndm.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_inpaint_ddim(self): |
|
sd_pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint_legacy/stable_diffusion_1_5_ddim.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_inpaint_lms(self): |
|
sd_pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint_legacy/stable_diffusion_1_5_lms.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_inpaint_dpm(self): |
|
sd_pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 30 |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint_legacy/stable_diffusion_1_5_dpm_multi.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|