|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
StableDiffusionLDM3DPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils import nightly, slow, torch_device |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusionLDM3DPipelineFastTests(unittest.TestCase): |
|
pipeline_class = StableDiffusionLDM3DPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=6, |
|
out_channels=6, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_ddim(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
ldm3d_pipe = StableDiffusionLDM3DPipeline(**components) |
|
ldm3d_pipe = ldm3d_pipe.to(torch_device) |
|
ldm3d_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = ldm3d_pipe(**inputs) |
|
rgb, depth = output.rgb, output.depth |
|
|
|
image_slice_rgb = rgb[0, -3:, -3:, -1] |
|
image_slice_depth = depth[0, -3:, -1] |
|
|
|
assert rgb.shape == (1, 64, 64, 3) |
|
assert depth.shape == (1, 64, 64) |
|
|
|
expected_slice_rgb = np.array( |
|
[0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] |
|
) |
|
expected_slice_depth = np.array([103.46727, 85.812004, 87.849236]) |
|
|
|
assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb).max() < 1e-2 |
|
assert np.abs(image_slice_depth.flatten() - expected_slice_depth).max() < 1e-2 |
|
|
|
def test_stable_diffusion_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
ldm3d_pipe = StableDiffusionLDM3DPipeline(**components) |
|
ldm3d_pipe = ldm3d_pipe.to(torch_device) |
|
ldm3d_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
|
|
output = ldm3d_pipe(**inputs) |
|
rgb_slice_1, depth_slice_1 = output.rgb, output.depth |
|
rgb_slice_1 = rgb_slice_1[0, -3:, -3:, -1] |
|
depth_slice_1 = depth_slice_1[0, -3:, -1] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
text_inputs = ldm3d_pipe.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=ldm3d_pipe.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_inputs = text_inputs["input_ids"].to(torch_device) |
|
|
|
prompt_embeds = ldm3d_pipe.text_encoder(text_inputs)[0] |
|
|
|
inputs["prompt_embeds"] = prompt_embeds |
|
|
|
|
|
output = ldm3d_pipe(**inputs) |
|
rgb_slice_2, depth_slice_2 = output.rgb, output.depth |
|
rgb_slice_2 = rgb_slice_2[0, -3:, -3:, -1] |
|
depth_slice_2 = depth_slice_2[0, -3:, -1] |
|
|
|
assert np.abs(rgb_slice_1.flatten() - rgb_slice_2.flatten()).max() < 1e-4 |
|
assert np.abs(depth_slice_1.flatten() - depth_slice_2.flatten()).max() < 1e-4 |
|
|
|
def test_stable_diffusion_negative_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True) |
|
ldm3d_pipe = StableDiffusionLDM3DPipeline(**components) |
|
ldm3d_pipe = ldm3d_pipe.to(device) |
|
ldm3d_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
negative_prompt = "french fries" |
|
output = ldm3d_pipe(**inputs, negative_prompt=negative_prompt) |
|
|
|
rgb, depth = output.rgb, output.depth |
|
rgb_slice = rgb[0, -3:, -3:, -1] |
|
depth_slice = depth[0, -3:, -1] |
|
|
|
assert rgb.shape == (1, 64, 64, 3) |
|
assert depth.shape == (1, 64, 64) |
|
|
|
expected_slice_rgb = np.array( |
|
[0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] |
|
) |
|
expected_slice_depth = np.array([107.84738, 84.62802, 89.962135]) |
|
assert np.abs(rgb_slice.flatten() - expected_slice_rgb).max() < 1e-2 |
|
assert np.abs(depth_slice.flatten() - expected_slice_depth).max() < 1e-2 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionLDM3DPipelineSlowTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "a photograph of an astronaut riding a horse", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_ldm3d_stable_diffusion(self): |
|
ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d") |
|
ldm3d_pipe = ldm3d_pipe.to(torch_device) |
|
ldm3d_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
output = ldm3d_pipe(**inputs) |
|
rgb, depth = output.rgb, output.depth |
|
rgb_slice = rgb[0, -3:, -3:, -1].flatten() |
|
depth_slice = rgb[0, -3:, -1].flatten() |
|
|
|
assert rgb.shape == (1, 512, 512, 3) |
|
assert depth.shape == (1, 512, 512) |
|
|
|
expected_slice_rgb = np.array( |
|
[0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] |
|
) |
|
expected_slice_depth = np.array( |
|
[0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] |
|
) |
|
assert np.abs(rgb_slice - expected_slice_rgb).max() < 3e-3 |
|
assert np.abs(depth_slice - expected_slice_depth).max() < 3e-3 |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableDiffusionPipelineNightlyTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "a photograph of an astronaut riding a horse", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 50, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_ldm3d(self): |
|
ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d").to(torch_device) |
|
ldm3d_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
output = ldm3d_pipe(**inputs) |
|
rgb, depth = output.rgb, output.depth |
|
|
|
expected_rgb_mean = 0.495586 |
|
expected_rgb_std = 0.33795515 |
|
expected_depth_mean = 112.48518 |
|
expected_depth_std = 98.489746 |
|
assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3 |
|
assert np.abs(expected_rgb_std - rgb.std()) < 1e-3 |
|
assert np.abs(expected_depth_mean - depth.mean()) < 1e-3 |
|
assert np.abs(expected_depth_std - depth.std()) < 1e-3 |
|
|
|
def test_ldm3d_v2(self): |
|
ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-4c").to(torch_device) |
|
ldm3d_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
output = ldm3d_pipe(**inputs) |
|
rgb, depth = output.rgb, output.depth |
|
|
|
expected_rgb_mean = 0.4194127 |
|
expected_rgb_std = 0.35375586 |
|
expected_depth_mean = 0.5638502 |
|
expected_depth_std = 0.34686103 |
|
|
|
assert rgb.shape == (1, 512, 512, 3) |
|
assert depth.shape == (1, 512, 512, 1) |
|
assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3 |
|
assert np.abs(expected_rgb_std - rgb.std()) < 1e-3 |
|
assert np.abs(expected_depth_mean - depth.mean()) < 1e-3 |
|
assert np.abs(expected_depth_std - depth.std()) < 1e-3 |
|
|