|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMParallelScheduler, |
|
DDPMParallelScheduler, |
|
StableDiffusionParadigmsPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils import slow, torch_device |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
require_torch_gpu, |
|
) |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusionParadigmsPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = StableDiffusionParadigmsPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
) |
|
scheduler = DDIMParallelScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
sample_size=128, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
|
|
hidden_act="gelu", |
|
projection_dim=512, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "a photograph of an astronaut riding a horse", |
|
"generator": generator, |
|
"num_inference_steps": 10, |
|
"guidance_scale": 6.0, |
|
"output_type": "numpy", |
|
"parallel": 3, |
|
"debug": True, |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_paradigms_default_case(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionParadigmsPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array([0.4773, 0.5417, 0.4723, 0.4925, 0.5631, 0.4752, 0.5240, 0.4935, 0.5023]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_paradigms_default_case_ddpm(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
torch.manual_seed(0) |
|
components["scheduler"] = DDPMParallelScheduler() |
|
torch.manual_seed(0) |
|
sd_pipe = StableDiffusionParadigmsPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array([0.3573, 0.4420, 0.4960, 0.4799, 0.3796, 0.3879, 0.4819, 0.4365, 0.4468]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
def test_inference_batch_consistent(self): |
|
super().test_inference_batch_consistent(batch_sizes=[1, 2]) |
|
|
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=3e-3) |
|
|
|
def test_stable_diffusion_paradigms_negative_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionParadigmsPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
negative_prompt = "french fries" |
|
output = sd_pipe(**inputs, negative_prompt=negative_prompt) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array([0.4771, 0.5420, 0.4683, 0.4918, 0.5636, 0.4725, 0.5230, 0.4923, 0.5015]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionParadigmsPipelineSlowTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, seed=0): |
|
generator = torch.Generator(device=torch_device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "a photograph of an astronaut riding a horse", |
|
"generator": generator, |
|
"num_inference_steps": 10, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
"parallel": 3, |
|
"debug": True, |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_paradigms_default(self): |
|
model_ckpt = "stabilityai/stable-diffusion-2-base" |
|
scheduler = DDIMParallelScheduler.from_pretrained(model_ckpt, subfolder="scheduler") |
|
pipe = StableDiffusionParadigmsPipeline.from_pretrained(model_ckpt, scheduler=scheduler, safety_checker=None) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
expected_slice = np.array([0.9622, 0.9602, 0.9748, 0.9591, 0.9630, 0.9691, 0.9661, 0.9631, 0.9741]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-2 |
|
|