|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
from diffusers import FlaxStableDiffusionInpaintPipeline |
|
from diffusers.utils import is_flax_available, load_image, slow |
|
from diffusers.utils.testing_utils import require_flax |
|
|
|
|
|
if is_flax_available(): |
|
import jax |
|
import jax.numpy as jnp |
|
from flax.jax_utils import replicate |
|
from flax.training.common_utils import shard |
|
|
|
|
|
@slow |
|
@require_flax |
|
class FlaxStableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
|
|
def test_stable_diffusion_inpaint_pipeline(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/sd2-inpaint/init_image.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" |
|
) |
|
|
|
model_id = "xvjiarui/stable-diffusion-2-inpainting" |
|
pipeline, params = FlaxStableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None) |
|
|
|
prompt = "Face of a yellow cat, high resolution, sitting on a park bench" |
|
|
|
prng_seed = jax.random.PRNGKey(0) |
|
num_inference_steps = 50 |
|
|
|
num_samples = jax.device_count() |
|
prompt = num_samples * [prompt] |
|
init_image = num_samples * [init_image] |
|
mask_image = num_samples * [mask_image] |
|
prompt_ids, processed_masked_images, processed_masks = pipeline.prepare_inputs(prompt, init_image, mask_image) |
|
|
|
|
|
params = replicate(params) |
|
prng_seed = jax.random.split(prng_seed, jax.device_count()) |
|
prompt_ids = shard(prompt_ids) |
|
processed_masked_images = shard(processed_masked_images) |
|
processed_masks = shard(processed_masks) |
|
|
|
output = pipeline( |
|
prompt_ids, processed_masks, processed_masked_images, params, prng_seed, num_inference_steps, jit=True |
|
) |
|
|
|
images = output.images.reshape(num_samples, 512, 512, 3) |
|
|
|
image_slice = images[0, 253:256, 253:256, -1] |
|
|
|
output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) |
|
expected_slice = jnp.array( |
|
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] |
|
) |
|
print(f"output_slice: {output_slice}") |
|
assert jnp.abs(output_slice - expected_slice).max() < 1e-2 |
|
|