|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
EulerDiscreteScheduler, |
|
StableDiffusionLatentUpscalePipeline, |
|
StableDiffusionPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu |
|
|
|
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS |
|
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
def check_same_shape(tensor_list): |
|
shapes = [tensor.shape for tensor in tensor_list] |
|
return all(shape == shapes[0] for shape in shapes[1:]) |
|
|
|
|
|
class StableDiffusionLatentUpscalePipelineFastTests( |
|
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase |
|
): |
|
pipeline_class = StableDiffusionLatentUpscalePipeline |
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { |
|
"height", |
|
"width", |
|
"cross_attention_kwargs", |
|
"negative_prompt_embeds", |
|
"prompt_embeds", |
|
} |
|
required_optional_params = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} |
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS |
|
image_params = frozenset( |
|
[] |
|
) |
|
image_latents_params = frozenset([]) |
|
|
|
@property |
|
def dummy_image(self): |
|
batch_size = 1 |
|
num_channels = 4 |
|
sizes = (16, 16) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) |
|
return image |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
act_fn="gelu", |
|
attention_head_dim=8, |
|
norm_num_groups=None, |
|
block_out_channels=[32, 32, 64, 64], |
|
time_cond_proj_dim=160, |
|
conv_in_kernel=1, |
|
conv_out_kernel=1, |
|
cross_attention_dim=32, |
|
down_block_types=( |
|
"KDownBlock2D", |
|
"KCrossAttnDownBlock2D", |
|
"KCrossAttnDownBlock2D", |
|
"KCrossAttnDownBlock2D", |
|
), |
|
in_channels=8, |
|
mid_block_type=None, |
|
only_cross_attention=False, |
|
out_channels=5, |
|
resnet_time_scale_shift="scale_shift", |
|
time_embedding_type="fourier", |
|
timestep_post_act="gelu", |
|
up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D"), |
|
) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 32, 64, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=[ |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
scheduler = EulerDiscreteScheduler(prediction_type="sample") |
|
text_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
hidden_act="quick_gelu", |
|
projection_dim=512, |
|
) |
|
text_encoder = CLIPTextModel(text_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": model.eval(), |
|
"vae": vae.eval(), |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
} |
|
|
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": self.dummy_image.cpu(), |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_inference(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
self.assertEqual(image.shape, (1, 256, 256, 3)) |
|
expected_slice = np.array( |
|
[0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] |
|
) |
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3) |
|
|
|
def test_cpu_offload_forward_pass(self): |
|
super().test_cpu_offload_forward_pass(expected_max_diff=3e-3) |
|
|
|
def test_dict_tuple_outputs_equivalent(self): |
|
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=7e-3) |
|
|
|
def test_pt_np_pil_outputs_equivalent(self): |
|
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3) |
|
|
|
def test_save_load_local(self): |
|
super().test_save_load_local(expected_max_difference=3e-3) |
|
|
|
def test_save_load_optional_components(self): |
|
super().test_save_load_optional_components(expected_max_difference=3e-3) |
|
|
|
def test_karras_schedulers_shape(self): |
|
skip_schedulers = [ |
|
"DDIMScheduler", |
|
"DDPMScheduler", |
|
"PNDMScheduler", |
|
"HeunDiscreteScheduler", |
|
"EulerAncestralDiscreteScheduler", |
|
"KDPM2DiscreteScheduler", |
|
"KDPM2AncestralDiscreteScheduler", |
|
"DPMSolverSDEScheduler", |
|
] |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
|
|
|
|
pipe.scheduler.register_to_config(skip_prk_steps=True) |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = 2 |
|
|
|
outputs = [] |
|
for scheduler_enum in KarrasDiffusionSchedulers: |
|
if scheduler_enum.name in skip_schedulers: |
|
|
|
|
|
continue |
|
|
|
scheduler_cls = getattr(diffusers, scheduler_enum.name) |
|
pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config) |
|
output = pipe(**inputs)[0] |
|
outputs.append(output) |
|
|
|
assert check_same_shape(outputs) |
|
|
|
|
|
@require_torch_gpu |
|
@slow |
|
class StableDiffusionLatentUpscalePipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_latent_upscaler_fp16(self): |
|
generator = torch.manual_seed(33) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) |
|
pipe.to("cuda") |
|
|
|
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained( |
|
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16 |
|
) |
|
upscaler.to("cuda") |
|
|
|
prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic" |
|
|
|
low_res_latents = pipe(prompt, generator=generator, output_type="latent").images |
|
|
|
image = upscaler( |
|
prompt=prompt, |
|
image=low_res_latents, |
|
num_inference_steps=20, |
|
guidance_scale=0, |
|
generator=generator, |
|
output_type="np", |
|
).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" |
|
) |
|
assert np.abs((expected_image - image).mean()) < 5e-2 |
|
|
|
def test_latent_upscaler_fp16_image(self): |
|
generator = torch.manual_seed(33) |
|
|
|
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained( |
|
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16 |
|
) |
|
upscaler.to("cuda") |
|
|
|
prompt = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" |
|
|
|
low_res_img = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" |
|
) |
|
|
|
image = upscaler( |
|
prompt=prompt, |
|
image=low_res_img, |
|
num_inference_steps=20, |
|
guidance_scale=0, |
|
generator=generator, |
|
output_type="np", |
|
).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" |
|
) |
|
assert np.abs((expected_image - image).max()) < 5e-2 |
|
|