diffusers / tests /pipelines /stable_diffusion_xl /test_stable_diffusion_xl.py
Aminrabi's picture
End of training
c0af20c
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLPipeline,
UNet2DConditionModel,
UniPCMultistepScheduler,
)
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionXLPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionXLPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64,
)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_xl_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5873, 0.6128, 0.4797, 0.5122, 0.5674, 0.4639, 0.5227, 0.5149, 0.4747])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_xl_prompt_embeds(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward without prompt embeds
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt"] = 2 * [inputs["prompt"]]
inputs["num_images_per_prompt"] = 2
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
inputs = self.get_dummy_inputs(torch_device)
prompt = 2 * [inputs.pop("prompt")]
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = sd_pipe.encode_prompt(prompt)
output = sd_pipe(
**inputs,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
)
image_slice_2 = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
def test_stable_diffusion_xl_negative_prompt_embeds(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward without prompt embeds
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
prompt = 3 * [inputs.pop("prompt")]
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt)
output = sd_pipe(
**inputs,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
)
image_slice_2 = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@require_torch_gpu
def test_stable_diffusion_xl_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
pipe.unet.set_default_attn_processor()
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_stable_diffusion_two_xl_mixture_of_denoiser(self):
components = self.get_dummy_components()
pipe_1 = StableDiffusionXLPipeline(**components).to(torch_device)
pipe_1.unet.set_default_attn_processor()
pipe_2 = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device)
pipe_2.unet.set_default_attn_processor()
def assert_run_mixture(
num_steps,
split,
scheduler_cls_orig,
expected_tss,
num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps,
):
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = num_steps
class scheduler_cls(scheduler_cls_orig):
pass
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config)
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config)
# Let's retrieve the number of timesteps we want to use
pipe_1.scheduler.set_timesteps(num_steps)
expected_steps = pipe_1.scheduler.timesteps.tolist()
expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss))
expected_steps_2 = list(filter(lambda ts: ts < split, expected_tss))
# now we monkey patch step `done_steps`
# list into the step function for testing
done_steps = []
old_step = copy.copy(scheduler_cls.step)
def new_step(self, *args, **kwargs):
done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t`
return old_step(self, *args, **kwargs)
scheduler_cls.step = new_step
inputs_1 = {
**inputs,
**{
"denoising_end": 1.0 - (split / num_train_timesteps),
"output_type": "latent",
},
}
latents = pipe_1(**inputs_1).images[0]
assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"
inputs_2 = {
**inputs,
**{
"denoising_start": 1.0 - (split / num_train_timesteps),
"image": latents,
},
}
pipe_2(**inputs_2).images[0]
assert expected_steps_2 == done_steps[len(expected_steps_1) :]
assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"
steps = 10
for split in [300, 500, 700]:
for scheduler_cls_timesteps in [
(DDIMScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]),
(EulerDiscreteScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]),
(DPMSolverMultistepScheduler, [901, 811, 721, 631, 541, 451, 361, 271, 181, 91]),
(UniPCMultistepScheduler, [901, 811, 721, 631, 541, 451, 361, 271, 181, 91]),
(
HeunDiscreteScheduler,
[
901.0,
801.0,
801.0,
701.0,
701.0,
601.0,
601.0,
501.0,
501.0,
401.0,
401.0,
301.0,
301.0,
201.0,
201.0,
101.0,
101.0,
1.0,
1.0,
],
),
]:
assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1])
steps = 25
for split in [300, 500, 700]:
for scheduler_cls_timesteps in [
(
DDIMScheduler,
[
961,
921,
881,
841,
801,
761,
721,
681,
641,
601,
561,
521,
481,
441,
401,
361,
321,
281,
241,
201,
161,
121,
81,
41,
1,
],
),
(
EulerDiscreteScheduler,
[
961.0,
921.0,
881.0,
841.0,
801.0,
761.0,
721.0,
681.0,
641.0,
601.0,
561.0,
521.0,
481.0,
441.0,
401.0,
361.0,
321.0,
281.0,
241.0,
201.0,
161.0,
121.0,
81.0,
41.0,
1.0,
],
),
(
DPMSolverMultistepScheduler,
[
951,
913,
875,
837,
799,
761,
723,
685,
647,
609,
571,
533,
495,
457,
419,
381,
343,
305,
267,
229,
191,
153,
115,
77,
39,
],
),
(
UniPCMultistepScheduler,
[
951,
913,
875,
837,
799,
761,
723,
685,
647,
609,
571,
533,
495,
457,
419,
381,
343,
305,
267,
229,
191,
153,
115,
77,
39,
],
),
(
HeunDiscreteScheduler,
[
961.0,
921.0,
921.0,
881.0,
881.0,
841.0,
841.0,
801.0,
801.0,
761.0,
761.0,
721.0,
721.0,
681.0,
681.0,
641.0,
641.0,
601.0,
601.0,
561.0,
561.0,
521.0,
521.0,
481.0,
481.0,
441.0,
441.0,
401.0,
401.0,
361.0,
361.0,
321.0,
321.0,
281.0,
281.0,
241.0,
241.0,
201.0,
201.0,
161.0,
161.0,
121.0,
121.0,
81.0,
81.0,
41.0,
41.0,
1.0,
1.0,
],
),
]:
assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1])
def test_stable_diffusion_three_xl_mixture_of_denoiser(self):
components = self.get_dummy_components()
pipe_1 = StableDiffusionXLPipeline(**components).to(torch_device)
pipe_1.unet.set_default_attn_processor()
pipe_2 = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device)
pipe_2.unet.set_default_attn_processor()
pipe_3 = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device)
pipe_3.unet.set_default_attn_processor()
def assert_run_mixture(
num_steps,
split_1,
split_2,
scheduler_cls_orig,
num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps,
):
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = num_steps
class scheduler_cls(scheduler_cls_orig):
pass
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config)
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config)
pipe_3.scheduler = scheduler_cls.from_config(pipe_3.scheduler.config)
# Let's retrieve the number of timesteps we want to use
pipe_1.scheduler.set_timesteps(num_steps)
expected_steps = pipe_1.scheduler.timesteps.tolist()
split_1_ts = num_train_timesteps - int(round(num_train_timesteps * split_1))
split_2_ts = num_train_timesteps - int(round(num_train_timesteps * split_2))
expected_steps_1 = expected_steps[:split_1_ts]
expected_steps_2 = expected_steps[split_1_ts:split_2_ts]
expected_steps_3 = expected_steps[split_2_ts:]
expected_steps_1 = list(filter(lambda ts: ts >= split_1_ts, expected_steps))
expected_steps_2 = list(filter(lambda ts: ts >= split_2_ts and ts < split_1_ts, expected_steps))
expected_steps_3 = list(filter(lambda ts: ts < split_2_ts, expected_steps))
# now we monkey patch step `done_steps`
# list into the step function for testing
done_steps = []
old_step = copy.copy(scheduler_cls.step)
def new_step(self, *args, **kwargs):
done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t`
return old_step(self, *args, **kwargs)
scheduler_cls.step = new_step
inputs_1 = {**inputs, **{"denoising_end": split_1, "output_type": "latent"}}
latents = pipe_1(**inputs_1).images[0]
assert (
expected_steps_1 == done_steps
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}"
with self.assertRaises(ValueError) as cm:
inputs_2 = {
**inputs,
**{
"denoising_start": split_2,
"denoising_end": split_1,
"image": latents,
"output_type": "latent",
},
}
pipe_2(**inputs_2).images[0]
assert "cannot be larger than or equal to `denoising_end`" in str(cm.exception)
inputs_2 = {
**inputs,
**{"denoising_start": split_1, "denoising_end": split_2, "image": latents, "output_type": "latent"},
}
pipe_2(**inputs_2).images[0]
assert expected_steps_2 == done_steps[len(expected_steps_1) :]
inputs_3 = {**inputs, **{"denoising_start": split_2, "image": latents}}
pipe_3(**inputs_3).images[0]
assert expected_steps_3 == done_steps[len(expected_steps_1) + len(expected_steps_2) :]
assert (
expected_steps == done_steps
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}"
for steps in [7, 11, 20]:
for split_1, split_2 in zip([0.19, 0.32], [0.81, 0.68]):
for scheduler_cls in [
DDIMScheduler,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler,
UniPCMultistepScheduler,
HeunDiscreteScheduler,
]:
assert_run_mixture(steps, split_1, split_2, scheduler_cls)
def test_stable_diffusion_xl_multi_prompts(self):
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
# forward with single prompt
inputs = self.get_dummy_inputs(torch_device)
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt_2"] = inputs["prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt_2"] = "different prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
# manually set a negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same negative_prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = inputs["negative_prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = "different negative prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4