diffusers / tests /pipelines /stable_diffusion_xl /test_stable_diffusion_xl_img2img.py
Aminrabi's picture
End of training
c0af20c
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionXLImg2ImgPipeline,
UNet2DConditionModel,
)
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionXLImg2ImgPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionXLImg2ImgPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self, skip_first_text_encoder=False):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=80, # 6 * 8 + 32
cross_attention_dim=64 if not skip_first_text_encoder else 32,
)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder if not skip_first_text_encoder else None,
"tokenizer": tokenizer if not skip_first_text_encoder else None,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image / 2 + 0.5
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "numpy",
"strength": 0.8,
}
return inputs
def test_stable_diffusion_xl_img2img_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_xl_refiner(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components(skip_first_text_encoder=True)
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4676, 0.4865, 0.4335, 0.6715, 0.5578, 0.4497, 0.5847, 0.5967, 0.5198])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
# TODO(Patrick, Sayak) - skip for now as this requires more refiner tests
def test_save_load_optional_components(self):
pass
def test_stable_diffusion_xl_img2img_negative_prompt_embeds(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward without prompt embeds
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
prompt = 3 * [inputs.pop("prompt")]
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt)
output = sd_pipe(
**inputs,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
)
image_slice_2 = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
@require_torch_gpu
def test_stable_diffusion_xl_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
pipe.unet.set_default_attn_processor()
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_stable_diffusion_xl_multi_prompts(self):
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
# forward with single prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["prompt_2"] = inputs["prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["prompt_2"] = "different prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
# manually set a negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["negative_prompt"] = "negative prompt"
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same negative_prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = inputs["negative_prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = "different negative prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4