|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerDiscreteScheduler, |
|
HeunDiscreteScheduler, |
|
StableDiffusionXLInpaintPipeline, |
|
UNet2DConditionModel, |
|
UniPCMultistepScheduler, |
|
) |
|
from diffusers.utils import floats_tensor, torch_device |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu |
|
|
|
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS |
|
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusionXLInpaintPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = StableDiffusionXLInpaintPipeline |
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS |
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS |
|
image_params = frozenset([]) |
|
|
|
image_latents_params = frozenset([]) |
|
|
|
def get_dummy_components(self, skip_first_text_encoder=False): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64 if not skip_first_text_encoder else 32, |
|
) |
|
scheduler = EulerDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
steps_offset=1, |
|
beta_schedule="scaled_linear", |
|
timestep_spacing="leading", |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
sample_size=128, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
|
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder if not skip_first_text_encoder else None, |
|
"tokenizer": tokenizer if not skip_first_text_encoder else None, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer_2": tokenizer_2, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image.cpu().permute(0, 2, 3, 1)[0] |
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) |
|
|
|
image[8:, 8:, :] = 255 |
|
mask_image = Image.fromarray(np.uint8(image)).convert("L").resize((64, 64)) |
|
|
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_xl_inpaint_euler(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array([0.6965, 0.5584, 0.5693, 0.5739, 0.6092, 0.6620, 0.5902, 0.5612, 0.5319]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3) |
|
|
|
|
|
def test_save_load_optional_components(self): |
|
pass |
|
|
|
def test_stable_diffusion_xl_inpaint_negative_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
negative_prompt = 3 * ["this is a negative prompt"] |
|
inputs["negative_prompt"] = negative_prompt |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
negative_prompt = 3 * ["this is a negative prompt"] |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt) |
|
|
|
output = sd_pipe( |
|
**inputs, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
@require_torch_gpu |
|
def test_stable_diffusion_xl_offloads(self): |
|
pipes = [] |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLInpaintPipeline(**components).to(torch_device) |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLInpaintPipeline(**components) |
|
sd_pipe.enable_model_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLInpaintPipeline(**components) |
|
sd_pipe.enable_sequential_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
image_slices = [] |
|
for pipe in pipes: |
|
pipe.unet.set_default_attn_processor() |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slices.append(image[0, -3:, -3:, -1].flatten()) |
|
|
|
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 |
|
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 |
|
|
|
def test_stable_diffusion_xl_refiner(self): |
|
device = "cpu" |
|
components = self.get_dummy_components(skip_first_text_encoder=True) |
|
|
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
print(torch.from_numpy(image_slice).flatten()) |
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array([0.9106, 0.6563, 0.6766, 0.6537, 0.6709, 0.7367, 0.6537, 0.5937, 0.5418]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_two_xl_mixture_of_denoiser(self): |
|
components = self.get_dummy_components() |
|
pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) |
|
pipe_1.unet.set_default_attn_processor() |
|
pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) |
|
pipe_2.unet.set_default_attn_processor() |
|
|
|
def assert_run_mixture( |
|
num_steps, split, scheduler_cls_orig, num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps |
|
): |
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = num_steps |
|
|
|
class scheduler_cls(scheduler_cls_orig): |
|
pass |
|
|
|
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) |
|
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) |
|
|
|
|
|
pipe_1.scheduler.set_timesteps(num_steps) |
|
expected_steps = pipe_1.scheduler.timesteps.tolist() |
|
|
|
split_ts = num_train_timesteps - int(round(num_train_timesteps * split)) |
|
expected_steps_1 = expected_steps[:split_ts] |
|
expected_steps_2 = expected_steps[split_ts:] |
|
|
|
expected_steps_1 = list(filter(lambda ts: ts >= split_ts, expected_steps)) |
|
expected_steps_2 = list(filter(lambda ts: ts < split_ts, expected_steps)) |
|
|
|
|
|
|
|
done_steps = [] |
|
old_step = copy.copy(scheduler_cls.step) |
|
|
|
def new_step(self, *args, **kwargs): |
|
done_steps.append(args[1].cpu().item()) |
|
return old_step(self, *args, **kwargs) |
|
|
|
scheduler_cls.step = new_step |
|
|
|
inputs_1 = {**inputs, **{"denoising_end": split, "output_type": "latent"}} |
|
latents = pipe_1(**inputs_1).images[0] |
|
|
|
assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" |
|
|
|
inputs_2 = {**inputs, **{"denoising_start": split, "image": latents}} |
|
pipe_2(**inputs_2).images[0] |
|
|
|
assert expected_steps_2 == done_steps[len(expected_steps_1) :] |
|
assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" |
|
|
|
for steps in [5, 8, 20]: |
|
for split in [0.33, 0.49, 0.71]: |
|
for scheduler_cls in [ |
|
DDIMScheduler, |
|
EulerDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
UniPCMultistepScheduler, |
|
HeunDiscreteScheduler, |
|
]: |
|
assert_run_mixture(steps, split, scheduler_cls) |
|
|
|
def test_stable_diffusion_three_xl_mixture_of_denoiser(self): |
|
components = self.get_dummy_components() |
|
pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) |
|
pipe_1.unet.set_default_attn_processor() |
|
pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) |
|
pipe_2.unet.set_default_attn_processor() |
|
pipe_3 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) |
|
pipe_3.unet.set_default_attn_processor() |
|
|
|
def assert_run_mixture( |
|
num_steps, |
|
split_1, |
|
split_2, |
|
scheduler_cls_orig, |
|
num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps, |
|
): |
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = num_steps |
|
|
|
class scheduler_cls(scheduler_cls_orig): |
|
pass |
|
|
|
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) |
|
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) |
|
pipe_3.scheduler = scheduler_cls.from_config(pipe_3.scheduler.config) |
|
|
|
|
|
pipe_1.scheduler.set_timesteps(num_steps) |
|
expected_steps = pipe_1.scheduler.timesteps.tolist() |
|
|
|
split_1_ts = num_train_timesteps - int(round(num_train_timesteps * split_1)) |
|
split_2_ts = num_train_timesteps - int(round(num_train_timesteps * split_2)) |
|
expected_steps_1 = expected_steps[:split_1_ts] |
|
expected_steps_2 = expected_steps[split_1_ts:split_2_ts] |
|
expected_steps_3 = expected_steps[split_2_ts:] |
|
|
|
expected_steps_1 = list(filter(lambda ts: ts >= split_1_ts, expected_steps)) |
|
expected_steps_2 = list(filter(lambda ts: ts >= split_2_ts and ts < split_1_ts, expected_steps)) |
|
expected_steps_3 = list(filter(lambda ts: ts < split_2_ts, expected_steps)) |
|
|
|
|
|
|
|
done_steps = [] |
|
old_step = copy.copy(scheduler_cls.step) |
|
|
|
def new_step(self, *args, **kwargs): |
|
done_steps.append(args[1].cpu().item()) |
|
return old_step(self, *args, **kwargs) |
|
|
|
scheduler_cls.step = new_step |
|
|
|
inputs_1 = {**inputs, **{"denoising_end": split_1, "output_type": "latent"}} |
|
latents = pipe_1(**inputs_1).images[0] |
|
|
|
assert ( |
|
expected_steps_1 == done_steps |
|
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}" |
|
|
|
inputs_2 = { |
|
**inputs, |
|
**{"denoising_start": split_1, "denoising_end": split_2, "image": latents, "output_type": "latent"}, |
|
} |
|
pipe_2(**inputs_2).images[0] |
|
|
|
assert expected_steps_2 == done_steps[len(expected_steps_1) :] |
|
|
|
inputs_3 = {**inputs, **{"denoising_start": split_2, "image": latents}} |
|
pipe_3(**inputs_3).images[0] |
|
|
|
assert expected_steps_3 == done_steps[len(expected_steps_1) + len(expected_steps_2) :] |
|
assert ( |
|
expected_steps == done_steps |
|
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}" |
|
|
|
for steps in [7, 11, 20]: |
|
for split_1, split_2 in zip([0.19, 0.32], [0.81, 0.68]): |
|
for scheduler_cls in [ |
|
DDIMScheduler, |
|
EulerDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
UniPCMultistepScheduler, |
|
HeunDiscreteScheduler, |
|
]: |
|
assert_run_mixture(steps, split_1, split_2, scheduler_cls) |
|
|
|
def test_stable_diffusion_xl_multi_prompts(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components).to(torch_device) |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = 5 |
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = 5 |
|
inputs["prompt_2"] = inputs["prompt"] |
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = 5 |
|
inputs["prompt_2"] = "different prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_3 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = 5 |
|
inputs["negative_prompt"] = "negative prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = 5 |
|
inputs["negative_prompt"] = "negative prompt" |
|
inputs["negative_prompt_2"] = inputs["negative_prompt"] |
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = 5 |
|
inputs["negative_prompt"] = "negative prompt" |
|
inputs["negative_prompt_2"] = "different negative prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_3 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 |
|
|