|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import VersatileDiffusionDualGuidedPipeline |
|
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class VersatileDiffusionDualGuidedPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_remove_unused_weights_save_load(self): |
|
pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained("shi-labs/versatile-diffusion") |
|
|
|
pipe.remove_unused_weights() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
second_prompt = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" |
|
) |
|
|
|
generator = torch.manual_seed(0) |
|
image = pipe( |
|
prompt="first prompt", |
|
image=second_prompt, |
|
text_to_image_strength=0.75, |
|
generator=generator, |
|
guidance_scale=7.5, |
|
num_inference_steps=2, |
|
output_type="numpy", |
|
).images |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pipe.save_pretrained(tmpdirname) |
|
pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained(tmpdirname) |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = generator.manual_seed(0) |
|
new_image = pipe( |
|
prompt="first prompt", |
|
image=second_prompt, |
|
text_to_image_strength=0.75, |
|
generator=generator, |
|
guidance_scale=7.5, |
|
num_inference_steps=2, |
|
output_type="numpy", |
|
).images |
|
|
|
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" |
|
|
|
def test_inference_dual_guided(self): |
|
pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained("shi-labs/versatile-diffusion") |
|
pipe.remove_unused_weights() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
first_prompt = "cyberpunk 2077" |
|
second_prompt = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" |
|
) |
|
generator = torch.manual_seed(0) |
|
image = pipe( |
|
prompt=first_prompt, |
|
image=second_prompt, |
|
text_to_image_strength=0.75, |
|
generator=generator, |
|
guidance_scale=7.5, |
|
num_inference_steps=50, |
|
output_type="numpy", |
|
).images |
|
|
|
image_slice = image[0, 253:256, 253:256, -1] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0787, 0.0849, 0.0826, 0.0812, 0.0807, 0.0795, 0.0818, 0.0798, 0.0779]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|